Forgot password
 Register account
View 12|Reply 3

[几何] 摆线$\{az^m+bz^n:|z|=1\}$

[Copy link]

3172

Threads

7934

Posts

48

Reputation

Show all posts

hbghlyj posted 2025-6-28 00:48 |Read mode
设 $Z=e^{i\theta}$,则
$$
z(\theta)=a\,e^{im\theta}+b\,e^{in\theta}
$$
表示两个半径分别为 $\lvert a\rvert$、$\lvert b\rvert$、角速度分别为 $m$、$n$ 的圆周运动之矢量和。
依据双重生成定理(D. Bernoulli于 1725 年发现,Theorem 3: The Double Generation Theorem)任何外摆轮亦可释为内摆轮(hypocycloid),因此曲线
$$
z=a\,Z^m+b\,Z^n
$$
既可视为外摆轮,也可等价视作内摆轮轨迹。

Comment

连杆机构  posted 2025-6-28 00:57

3172

Threads

7934

Posts

48

Reputation

Show all posts

original poster hbghlyj posted 2025-6-27 19:06
双重生成定理:设 $a,b,b'$ 满足 $b + b' = a$. 两条旋轮线 $[a,b,t]$ 和 $[a,b',w]$ 重合。
证明:
令 $b' = a - b$,将其代入第一条参数方程
$$
x = b'\cos t + (a - b')\cos\!\Bigl(\tfrac{b'}{a - b'}\,t\Bigr),
\quad
y = b'\sin t - (a - b')\sin\!\Bigl(\tfrac{b'}{a - b'}\,t\Bigr).
$$
由于两小圆$(B,b)$与$(B,a-b)$均从同一始点$(a,0)$出发,滚动弧长相等,故有
$$
(a - b)\,t = b\,w.
$$
由此可解得
$$
w = \frac{(a - b)\,t}{b} = \frac{b'\,t}{a - b'},
\quad
t = \frac{b\,w}{a - b} = \frac{(a - b')\,w}{b'}.
$$
将上述关系代入第二条参数方程,可得
$$
\begin{aligned}
x
&= b'\cos\Bigl(\tfrac{a - b'}{b}\,w\Bigr) + (a - b')\cos w,\\
y
&= b'\sin\Bigl(\tfrac{a - b'}{b}\,w\Bigr) - (a - b')\sin w
   = -\Bigl[(a - b')\sin w + b'\sin\Bigl(\tfrac{a - b'}{b}\,w\Bigr)\Bigr].
\end{aligned}
$$
由此可见,两条曲线的 $x$ 坐标完全一致,而 $y$ 坐标互为相反数;结合曲线的对称性,遂得 $[a,b,t]$ 与 $\bigl[a,b',w\bigr]$ 重合。∎

3172

Threads

7934

Posts

48

Reputation

Show all posts

original poster hbghlyj posted 2025-6-27 19:16

hypocycloid is brachistochrone for gravitational field inside a uniform Earth

在均匀球体内部,根据牛顿壳层定理,质点受到的向心力
$$
F(r)=-m\,\omega^2 r\quad(\omega^2=\frac{4\pi G\rho}{3})
$$
与极坐标下从球面(半径$R$)到中心任意点的速度
$$
v(r)=\sqrt{2\int_r^R\abs{F(r')}dr'}=\sqrt{k(R^2-r^2)}
$$
(其中$k=\omega^2$),其运动时间可表示为
$$
T=\int\frac{\sqrt{(dr)^2+(r\,d\theta)^2}}{v(r)}
=\int\frac{\sqrt{r'^2+r^2}}{\sqrt{k\,(R^2-r^2)}}\,d\theta,
$$
令被积函数为拉格朗日量$L(r,r')=\frac{\sqrt{r'^2+r^2}}{\sqrt{R^2-r^2}}$,由于$L$不显含$\theta$,可用Beltrami
$$
\frac{r^2}{\sqrt{(R^2-r^2)(r'^2+r^2)}}=C
\;\Longrightarrow\;
\bigl(\frac{dr}{d\theta}\bigr)^2
=\frac{(C^2+1)r^2-R^2}{R^2-r^2}\,r^2,
$$
此方程的参数解正是半径比为$\sqrt{C^2+1}:1$的内摆线(hypocycloid)——故在力随距离成正比的场中,内摆线恰为最短下行曲线。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-29 17:57 GMT+8

Powered by Discuz!

Processed in 0.016706 seconds, 35 queries