Forgot password
 Register account
View 26|Reply 4

[几何] $\abs{\bm a}=\abs{\bm a+3\bm b}=2$ ,求 $\abs{\bm a+\bm b}+\abs{\bm b}$ 最大值

[Copy link]

770

Threads

4683

Posts

35

Karma

Show all posts

isee posted 2025-8-13 19:09 |Read mode
问题:两个非零平面向量 $\bm a,\bm b$ 满足 $\abs{\bm a}=2$, $\abs{\bm a+3\bm b}=2$ ,求 $\abs{\bm a+\bm b}+\abs{\bm b}$ 最大值.
snowblink posted 2025-8-13 20:12
根号6?

Comment

是的是的,直接心算就秒了哇  posted 2025-8-13 20:15

670

Threads

110K

Posts

231

Karma

Show all posts

kuing posted 2025-8-13 20:44
\begin{align*}
\abs{\bm a+\bm b}+\abs{\bm b}&\leqslant\sqrt{\left(1+\frac12\right)(\abs{\bm a+\bm b}^2+2\abs{\bm b}^2)}\\
&=\sqrt{\bm a^2+\frac12(\bm a+3\bm b)^2}\\
&=\sqrt6.
\end{align*}

770

Threads

4683

Posts

35

Karma

Show all posts

original poster isee posted 2025-8-13 20:51
把这样的向量
\[3(\bm a+\bm b)^2+6\bm b^2=2\bm a^2+(\bm a+3\bm b)^2\]
恒等式完得太熟了

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-8-15 02:36 GMT+8

Powered by Discuz!

Processed in 0.017973 seconds, 47 queries