Forgot password
 Register account
View 153|Reply 0

[几何] 单位向量下求向量模的和

[Copy link]

768

Threads

4685

Posts

26

Reputation

Show all posts

isee posted 2022-11-24 17:52 |Read mode
源自知乎提问

浙江味~~~

:已知平面向量 $\overrightarrow x,\overrightarrow y,\overrightarrow z$ 满足 $|\overrightarrow x|=\frac 12|\overrightarrow y|=\overrightarrow x\cdot \overrightarrow y=\overrightarrow z=1$ ,则 $|0.5\overrightarrow x+\overrightarrow z|+0.5|\overrightarrow y-\overrightarrow z|$ 的取值范围是______.





写得相当“隔离”.





先处理最大值.

依题设不妨令 $\overrightarrow x=(1/2,\sqrt 3/2)$ , $\overrightarrow y=(2,0)$ , $z=(\cos\theta,\sin\theta)$ ,由 $\frac{a+b}2\leqslant \sqrt{\frac{a^2+b^2}2}$知 \begin{align*}
&\quad\;\;|0.5\overrightarrow x+\overrightarrow z|+0.5|\overrightarrow y-\overrightarrow z|\\[1ex]
&=\sqrt{(1/4+\cos\theta)^2+(\sqrt 3/4+\sin\theta)^2}+\frac 12\sqrt{(2-\cos\theta)^2+\sin^2\theta}\\[1ex]
&=\sqrt{\frac 54+\frac{\sqrt 3}2\sin\theta+\frac 12\cos\theta}+\sqrt{\frac 54-\cos\theta}\\[1ex]
&\leqslant 2\sqrt{\frac{\frac 54+\frac{\sqrt 3}2\sin\theta+\frac 12\cos\theta+\frac 54-\cos\theta}2}\\[1ex]
&=\sqrt{5+2\sin(\theta-\pi/6)}\\[1ex]
&\leqslant\sqrt 7.
\end{align*} 当且仅当 $\theta=\dfrac{2\pi}3$ 时两等号同时成立.

再处理最小值.

由 $\overrightarrow x,\overrightarrow z$ 均为单位向量,易得 $|0.5\overrightarrow x+z |=|x+0.5\overrightarrow z|$ ,于是 \begin{align*}
|0.5\overrightarrow x+\overrightarrow z|+0.5|\overrightarrow y-\overrightarrow z|&=|\overrightarrow x+0.5\overrightarrow z|+|0.5\overrightarrow y-0.5\overrightarrow z|\\[1ex]
&\geqslant|\overrightarrow x+0.5\overrightarrow z+0.5\overrightarrow y-0.5\overrightarrow z|\\[1ex]
&=|x+0.5\overrightarrow y|\\
&=\sqrt 3.
\end{align*}当且仅当 $\overrightarrow x+0.5\overrightarrow z$ 与 $0.5(\overrightarrow y-\overrightarrow z)$ 同向共线取等号,此时 $\theta=-\dfrac\pi3.$

综上所求范围为 $[\sqrt 3,\sqrt 7].$




写完了,想了想,图形上(几何)可以用阿氏圆来统一,但是最大值不够"清晰".
isee=freeMaths@知乎

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 12:23 GMT+8

Powered by Discuz!

Processed in 0.029909 second(s), 25 queries

× Quick Reply To Top Edit