Forgot password?
 Create new account
View 170|Reply 6

[不等式] 已知$x>0,y>0$,方程$x+3y=x^3y^2$,求$3/x+2/y$的最小值

[Copy link]

134

Threads

760

Posts

5439

Credits

Credits
5439

Show all posts

走走看看 Posted at 2025-3-10 10:26:52 |Read mode
Last edited by hbghlyj at 2025-3-10 21:08:48题:已知 $x>0, y>0$,方程 $x+3 y=x^3 y^2$,则 $\frac{3}{x}+\frac{2}{y}$ 的最小值为?
[法一]:凑 $\left(\frac{3}{x}+\frac{2}{y}\right)+$ 待定系数法
对式左右同除 $x^3 y^2 \Rightarrow$ $\frac{1}{y} \cdot \frac{1}{x} \cdot \frac{1}{x} \cdot\left(\frac{3}{x}+\frac{1}{y}\right)=1 \xRightarrow{\text{待定系数法}} \frac{4}{9(\sqrt{2}+1)^4} \cdot \frac{(\sqrt{2}+1)^2}{y} \cdot \frac{\frac{3}{2}(\sqrt{2}+1)}{x} \cdot \frac{\frac{3}{2}(\sqrt{2}+1)}{x} \cdot\left(\frac{3}{x}+\frac{1}{y}\right)=1$ $\xRightarrow{\text{四元基本不等式}} 1 \leq \frac{4}{9(\sqrt{2}+1)^4}\left(\frac{\frac{(\sqrt{2}+1)^2}{y}+\frac{3}{2} \frac{(\sqrt{2}+1)}{x}+\frac{3}{2} \frac{(\sqrt{2}+1)}{x}+\frac{3}{x}+\frac{1}{y}}{4}\right)^4 \Rightarrow \frac{3}{x}+\frac{2}{y} \geq 2 \sqrt{3}$

把系数分别设成k、a、b,然后得出kabb=1,$\frac{2b+3}{a+1}=\frac{3}{2}$,整理
得到3a-4b=3,取a=5,b=3,则k=$\frac{1}{45}$。

代入原式得不到所求结果。
不知何故?请大神们指教。

133

Threads

259

Posts

2333

Credits

Credits
2333

Show all posts

郝酒 Posted at 2025-3-10 10:48:43
还要考虑取等条件要一致:
也即:$\frac{x}{y}=\frac{b}{a},(3+\frac{x}{y})=\frac{a}{k}$.

2

Threads

465

Posts

6357

Credits

Credits
6357
QQ

Show all posts

爪机专用 Posted at 2025-3-10 11:21:48
I am majia of kuing

134

Threads

760

Posts

5439

Credits

Credits
5439

Show all posts

 Author| 走走看看 Posted at 2025-3-10 11:55:41
Last edited by 走走看看 at 2025-3-10 13:56:58
郝酒 发表于 2025-3-10 10:48
还要考虑取等条件要一致:
也即:$\frac{x}{y}=\frac{b}{a},(3+\frac{x}{y})=\frac{a}{k}$. ...
$3+\frac{x}{y}=\frac{a}{k}$,这怎么得到的?

134

Threads

760

Posts

5439

Credits

Credits
5439

Show all posts

 Author| 走走看看 Posted at 2025-3-10 13:57:13
走走看看 发表于 2025-3-10 11:55
$3+\frac{x}{y}=\frac{a}{k}$,这怎么得到的?
由取等条件知:$\frac{3}{x}+\frac{1}{y}=\frac{a}{y}$

再与$3+\frac{x}{y}=\frac{a}{k}$比较得到 y=kx。

也就是说,为什么要求y=kx?
或者说要 $k=\frac{a}{b}$呢?

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2025-3-10 15:45:18
待定正数 `a`, `b`,有
\begin{align*}
1&=\frac1{ab^2}\cdot\frac ay\cdot\frac bx\cdot\frac bx\cdot\left(\frac3x+\frac1y\right)\\
&\leqslant\frac1{4^4ab^2}\left(\frac ay+\frac bx+\frac bx+\left(\frac3x+\frac1y\right)\right)^4\\
&=\frac1{4^4ab^2}\left(\frac{2b+3}x+\frac{a+1}y\right)^4,
\end{align*}
需要括号内系数比为三比二,且满足四元均值的取等,即
\[\led
&\frac{2b+3}{a+1}=\frac32,\\
&\frac ay=\frac bx=\frac3x+\frac1y,
\endled\]
第一条变成 `3a-4b=3`,由第二条得
\[a=\frac{3y}x+1,~b=3+\frac xy,\]

\[(a-1)(b-3)=\frac{3y}x\cdot\frac xy=3,\]
所以有
\[\led
3a-4b&=3,\\
(a-1)(b-3)&=3
\endled
\riff a=3+2\sqrt2,~b=\frac{3+3\sqrt2}2.\]

134

Threads

760

Posts

5439

Credits

Credits
5439

Show all posts

 Author| 走走看看 Posted at 2025-3-10 17:00:48
Last edited by 走走看看 at 2025-3-10 18:25:58
kuing 发表于 2025-3-10 15:45
待定正数 `a`, `b`,有
\begin{align*}
1&=\frac1{ab^2}\cdot\frac ay\cdot\frac bx\cdot\frac bx\cdot\lef ...
谢谢Kuing,您写得清晰明了!

也谢谢郝酒!


附取等条件:

\[x=\frac{\sqrt{6}}{2}\]
\[y=\frac{2\sqrt{3}+\sqrt{6}}{3}\]

手机版Mobile version|Leisure Math Forum

2025-4-20 22:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list