|
kuing
Posted at 2025-3-10 15:45:18
待定正数 `a`, `b`,有
\begin{align*}
1&=\frac1{ab^2}\cdot\frac ay\cdot\frac bx\cdot\frac bx\cdot\left(\frac3x+\frac1y\right)\\
&\leqslant\frac1{4^4ab^2}\left(\frac ay+\frac bx+\frac bx+\left(\frac3x+\frac1y\right)\right)^4\\
&=\frac1{4^4ab^2}\left(\frac{2b+3}x+\frac{a+1}y\right)^4,
\end{align*}
需要括号内系数比为三比二,且满足四元均值的取等,即
\[\led
&\frac{2b+3}{a+1}=\frac32,\\
&\frac ay=\frac bx=\frac3x+\frac1y,
\endled\]
第一条变成 `3a-4b=3`,由第二条得
\[a=\frac{3y}x+1,~b=3+\frac xy,\]
则
\[(a-1)(b-3)=\frac{3y}x\cdot\frac xy=3,\]
所以有
\[\led
3a-4b&=3,\\
(a-1)(b-3)&=3
\endled
\riff a=3+2\sqrt2,~b=\frac{3+3\sqrt2}2.\]
|
|