Forgot password
 Register account
View 287|Reply 4

[不等式] 已知$a$, $b$均为正数,$a^3+b^3+2ab=4$,求$a+b$的取值范围

[Copy link]

92

Threads

89

Posts

0

Reputation

Show all posts

aishuxue posted 2024-8-19 12:36 |Read mode
已知$a$, $b$均为正数,$a^3+b^3+2ab=4$,求$a+b$的取值范围.
没想出来啊!

48

Threads

770

Posts

93

Reputation

Show all posts

Czhang271828 posted 2024-8-19 14:13
Last edited by Czhang271828 2024-8-22 13:01设 $a+b=p$, $ab=q$, 则 $p(p^2-3q)+2q=4$. 此时
$$
q=\frac{p^3-4}{3p-2}\in{\color{red}(}0,p^2/4].
$$
解不等式, $\sqrt[3]4\,{\color{red}<} \,p\leq 2$.

注: 区间中的所有值均可以取到, 放心解不等式即可.

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2024-8-21 19:29
Last edited by hbghlyj 2025-4-7 16:54不等式研究欣赏qq群(群号码为305078297)里的某老师的解答,只给出了最大值,最小值好像没取到等号,最小值该怎么完善?

已知正数 $x, y$ 满足 $x^3+y^3+2 x y=4$,求 $x+y$ 的最大值设 $x+y=t$,则 $y=t-x$,代入已知得 $x^3+(t-x)^3+2 x(t-x)=4$整理得 $(3 t-2) x^2+t(2-3 t) x+t^3-4=0$
\[
\Delta=t^2(2-3 t)^2-4(3 t-2)\left(t^3-4\right) \geq 0
\]
即 $(2-3 t)(t-2)\left(t^2+4 t+8\right) \geq 0$,所以 $\frac{2}{3} \leq t \leq 2$,
当且仅当 $x=y=1$ 时,$x+y$ 取得最大值 2

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-8-21 19:39
其妙 发表于 2024-8-21 19:29
不等式研究欣赏qq群(群号码为305078297)里的某老师的解答,只给出了最大值,最小值好像没取到等号,最小 ...
用 2# 的方法就好了啊
(虽然有瑕疵,就是条件是正数,q 取不了 0,中间那里应该是 `\in(0,p^2/4]`,解出来就是 `\sqrt[3]4<p\leq 2`)

Comment

怪不得等号不成立  posted 2024-8-21 19:49

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 13:52 GMT+8

Powered by Discuz!

Processed in 0.183524 seconds, 49 queries