Forgot password?
 Create new account
View 199|Reply 1

[不等式] 困难的最大值

[Copy link]

16

Threads

35

Posts

329

Credits

Credits
329

Show all posts

Canhuang Posted at 2024-8-17 12:35:42 |Read mode
$x^2 + y^2 + x - 1 = 0$, 求 $(x - y + 1)^2 - xy(2x + y + 4)$ 的最大值.

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2025-3-29 02:12:12

\begin{aligned}
& \max \left\{(x-y+1)^2-x y(2 x+y+4) \mid x^2+x+y^2-1=0\right\}=\frac{1}{54}(133+29 \sqrt{29}) \\
& \quad \text { at }(x, y)=\left(\frac{\sqrt{29}}{6}-\frac{1}{2},-\frac{2}{3}\right)
\end{aligned}

手机版Mobile version|Leisure Math Forum

2025-4-20 22:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list