Forgot password?
 Create new account
View 233|Reply 3

[不等式] 最小

 Like [Copy link]

16

Threads

35

Posts

329

Credits

Credits
329

Show all posts

Canhuang Posted at 2023-8-1 12:03:00 |Read mode
设$x,y$为区间$(0,1)$上的实数, 证明: $x^2+xy+y^2, x^2+x(y-1)+(y-1)^2, (x-1)^2+(x-1)y+y^2, (x-1)^2+(x-1)(y-1)+(y-1)^2$ 中最小的至多为 $\dfrac13$.

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-8-1 14:21:11
有点儿意思,可以写成几何命题:
凸四边形 `ABCD` 中,对角线 `AC=BD=1` 且夹角为 `60\du`,证明该四边形的最小边不大于 `1/\sqrt3`。

(证明还没想到

19

Threads

81

Posts

599

Credits

Credits
599
QQ

Show all posts

O-17 Posted at 2023-8-4 01:33:21
一点思路, 具体的证明明天再想
k - 11307.png

16

Threads

35

Posts

329

Credits

Credits
329

Show all posts

 Author| Canhuang Posted at 2023-8-4 20:36:23
原解答:
依对称性,不妨设 $x\in(0, 1), y\in(0, \dfrac12)$。
考虑点 $(0,0),(1,0),(\dfrac12,\dfrac12)$ 构成的三角形,当 $x,y$ 在点 $(0,0), (\dfrac12,0),(\dfrac13,\dfrac13)$ 构成的三角形内,$x^2+xy+y^2$ 为最小;当 $x,y$ 在点 $(\dfrac12,0),(\dfrac13,\dfrac13),(\dfrac12,\dfrac12),(1,0)$ 构成的四边形中,$(x-1)^2+(x-1)y+y^2$ 为最小。由图易知结论成立。

手机版Mobile version|Leisure Math Forum

2025-4-21 01:26 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list