Forgot password?
 Create new account
View 199|Reply 2

[不等式] 最小值问题

[Copy link]

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

敬畏数学 Posted at 2024-10-4 10:30:40 |Read mode
正数x,y满足$ \sqrt{9x^2-1}+ \sqrt{9y^2-1}=9xy, $则$ 4x^2+y^2 $最小值——————。

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2024-10-4 13:36:54
令 `\sqrt{9x^2-1}=a`, `\sqrt{9y^2-1}=b`,则 `x=\frac13\sqrt{1+a^2}`, `y=\frac13\sqrt{1+b^2}`,条件变为
\begin{gather*}
a+b=\sqrt{(1+a^2)(1+b^2)},\\
(a+b)^2=(1+a^2)(1+b^2),\\
(ab-1)^2=0,\\
ab=1,
\end{gather*}
所以
\[4x^2+y^2=\frac 49(1+a^2)+\frac 19(1+b^2)=\frac 19(5+4a^2+b^2)\geqslant \frac 19(5+4ab)=1.\]

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

 Author| 敬畏数学 Posted at 2024-10-4 14:08:09
kuing 发表于 2024-10-4 13:36
令 `\sqrt{9x^2-1}=a`, `\sqrt{9y^2-1}=b`,则 `x=\frac13\sqrt{1+a^2}`, `y=\frac13\sqrt{1+b^2}`,条件变 ...
谢谢大师提醒。看到倒数第三行好像直接可以柯西(或者向量)!

手机版Mobile version|Leisure Math Forum

2025-4-21 01:40 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list