Forgot password?
 Create new account
View 188|Reply 4

[不等式] 求最小值

[Copy link]

8

Threads

8

Posts

195

Credits

Credits
195

Show all posts

创之谜 Posted at 2025-3-3 18:06:11 |Read mode
$已知x,y>0,x+3y=x^{3}y^{2}求\dfrac{3}{x}+\dfrac{2}{y}最小值?$

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2025-3-3 19:16:57
将条件改写为\[x^2=\frac3{xy}+\frac1{y^2},\]
于是由均值不等式,有
\begin{align*}
\left(\frac3x+\frac2y\right)^2&=\frac9{x^2}+4\left(\frac{3}{xy}+\frac1{y^2}\right)\\
&=\frac9{x^2}+4x^2\\
&\geqslant 12,
\end{align*}

再开方即知所求式的最小值为 $2\sqrt3$.
isee=freeMaths@知乎

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2025-3-3 19:23:24

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2025-3-3 19:25:08
kuing 发表于 2025-3-3 19:23
类似题:
https://kuing.cjhb.site/forum.php?mod=viewthread&tid=9031
https://kuing.cjhb.site/forum.php ...
原来这些年都过去了,已经~
isee=freeMaths@知乎

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2025-3-4 17:24:48
kuing 发表于 2025-3-3 19:23
类似题:
……
在知乎得知此题来自《安徽省“江南十校”2025届高三下学期联考数学》第8题.
isee=freeMaths@知乎

手机版Mobile version|Leisure Math Forum

2025-4-20 22:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list