Forgot password?
 Create new account
View 186|Reply 10

[不等式] B站一道二元分式根式最值

[Copy link]

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2024-5-4 12:37:14 |Read mode
Last edited by kuing at 2024-5-4 13:52:00前两天 86鱼 在微信发来一个B站链接里有一道题:

已知 `x`, `y>0`,求下式的最大值
\[\frac{(x^2-1)\bigl(x\sqrt{x^2-y^2+1}+3y\bigr)}{x^4+2x^2+1}.\]

解:显然只需考虑 `x>1` 的情况。

利用不等式 `(a^2-b^2)(c^2-d^2)\leqslant(ac-bd)^2`,有
\begin{align*}
x\sqrt{x^2-y^2+1}&=\sqrt{(x^2+9-9)(x^2+1-y^2)}\\
&\leqslant\sqrt{(x^2+9)(x^2+1)}-3y,
\end{align*}
得到
\[\frac{(x^2-1)\bigl(x\sqrt{x^2-y^2+1}+3y\bigr)}{x^4+2x^2+1}\leqslant\frac{(x^2-1)\sqrt{(x^2+9)(x^2+1)}}{x^4+2x^2+1},\]
换个元,令 `a=\sqrt{x^2+1}>\sqrt2`,则
\begin{align*}
\RHS&=\frac{(a^2-2)\sqrt{a^2+8}}{a^3}\\
&=\frac1{2a^3}\sqrt{(2a^2-4)(2a^2-4)(a^2+8)}\\
&\leqslant\frac1{2a^3}\sqrt{\left(\frac{2a^2-4+2a^2-4+a^2+8}3\right)^3}\\
&=\frac56\sqrt{\frac53},
\end{align*}
取等略。

Comment

我去B站的链接那踢场子了,说up不仅菜,讲的声音比蚊子还要小,还讲的不清不楚的,后面贴上了论坛链接,然后就给删评论了😁  Posted at 2024-5-5 23:18
擦,何必去踢呢😅  Posted at 2024-5-6 00:31
哎~我也是一时脑热,就实话实说了...😒或许但凡他讲大声一点也好😞  Posted at 2024-5-6 00:55
噢,up不单只删了评论,还将我拉黑了😄也是,遇上踢场子的,不拉黑的话,留着过年  Posted at 2024-5-6 16:21

7

Threads

349

Posts

2809

Credits

Credits
2809

Show all posts

睡神 Posted at 2024-5-4 20:26:49
Last edited by 睡神 at 2024-5-4 20:35:00来个简化版的

显然$x\ge 1$

$\dfrac{(x^2-1)\bigl(x\sqrt{x^2-y^2+1}+3y\bigr)}{(x^2+1)^2}$

$\le \dfrac{(x^2-1)\sqrt{(x^2+3^2)(x^2-y^2+1+y^2)}}{(x^2+1)^2}$

$=\sqrt{\dfrac{(x^2-1)^2(x^2+9)}{(x^2+1)^3}}$

$=\sqrt{\dfrac{(2x^2-2)^2(x^2+9)}{4(x^2+1)^3}}$

$\le \sqrt{\dfrac{(2x^2-2+2x^2-2+x^2+9)^3}{108(x^2+1)^3}}$

$=\sqrt{\dfrac{125}{108}}$

$=\dfrac{5}{6}\sqrt{\dfrac{5}{3}}$

Comment

确实用柯西好一些😀  Posted at 2024-5-4 20:54
没啥区别吧,就是稍微将过程简化一下罢了  Posted at 2024-5-4 21:16
不能取消点赞的吗?划动屏幕时,不小心点击到了点赞😂  Posted at 2024-5-4 21:23
无所谓啦  Posted at 2024-5-4 21:44
自己点赞自己😂  Posted at 2024-5-4 21:46
除了不懂,就是装懂

手机版Mobile version|Leisure Math Forum

2025-4-21 01:45 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list