Forgot password?
 Create new account
View 208|Reply 2

[不等式] 一道不等式求最小值问题

[Copy link]

109

Threads

226

Posts

2915

Credits

Credits
2915

Show all posts

facebooker Posted at 2023-8-15 16:09:15 |Read mode
已知$a,b>0,2b^2+ab-\frac{4b}{a}+2=0$,则$a+\frac{2}{a}+b$的最小值是__

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-8-15 16:21:01
懒得想华丽方法,直接用求根公式解出 b 代入化简好了,最后变成
\[\frac{3}{a}+\frac{3 a}{4}-\frac{1}{4} \sqrt{\left( a-\frac 4a \right)^2-16},\]
再换个元 `t=4/a+a` 即
\[\frac 34t-\frac 14\sqrt {t^2-32},\]
下略

1

Threads

104

Posts

1771

Credits

Credits
1771

Show all posts

Aluminiumor Posted at 2024-7-28 08:11:03
来个稍微“华丽”点的:
注意到
$$\Big(a+2b\Big)\Big(\frac2a-b\Big)=2-\left(2b^2+ab-\frac{4b}{a}\right)=4$$

$$a+\frac2a+b=\Big(a+2b\Big)+\Big(\frac2a-b\Big)\geq2\sqrt{4}=4$$
取等条件为
$$a=3-\sqrt{5},b=\frac{\sqrt{5}-1}{2}$$

手机版Mobile version|Leisure Math Forum

2025-4-21 01:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list