Forgot password
 Register account
View 336|Reply 3

[不等式] 正数a,b,满足$a+b=a^3b^2$

[Copy link]

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2022-5-16 14:26 |Read mode
正数a,b,满足$a+b=a^3b^2$,则$\frac{1}{a}+\frac{2}{b}$的最小值.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-5-16 15:40
和这题差不多:zhihu.com/question/483946898
\[\left( \frac1a+\frac2b \right)^4=\left( \frac{2a+b}{ab} \right)^4\frac{a^3b^2}{a+b}=\frac{(2a+b)^4}{ab^2(a+b)},\]
数据也是凑得比较好的,可以这样
\[(2a+b)^4=(4a(a+b)+b^2)^2\geqslant4\cdot4a(a+b)\cdot b^2,\]
从而原式 `\geqslant2`。

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2022-5-16 19:09
kuing 发表于 2022-5-16 15:40
和这题差不多:https://www.zhihu.com/question/483946898
\[\left( \frac1a+\frac2b \right)^4=\left( \fr ...
链接中的题我不专门收论坛了 forum.php?mod=viewthread&tid=8219
isee=freeMaths@知乎

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 11:49 GMT+8

Powered by Discuz!

Processed in 0.018381 seconds, 46 queries