Forgot password?
 Register account
View 2232|Reply 3

[不等式] 来自人教论坛的简单三元不等式b^2/a+c^2/b+a^2/c

[Copy link]

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-5-3 19:45 |Read mode
Last edited by hbghlyj 2025-4-5 02:51$\dfrac1a+\dfrac1b+\dfrac1c=1$$$\dfrac{b^2}a+\dfrac{c^2}b+\dfrac{a^2}c\ge9$$

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2014-5-3 19:45
这……太简单了吧……随手拿出N种“不同”证法啊……

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

 Author| 其妙 Posted 2014-5-3 19:47
回复 2# kuing

主要是学学发这个标题,也让大家练练

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

 Author| 其妙 Posted 2014-5-6 00:23
回复 3# 其妙
鸭血!这贴快沉了呀?赶快在那边粘贴一个解法过来!("$1$”的妙用)
\begin{align*}
\dfrac{b^2}a+\dfrac{c^2}b+\dfrac{a^2}c&=(\dfrac{b^2}a+\dfrac{c^2}b+\dfrac{a^2}c)(\dfrac1a+\dfrac1b+\dfrac1c)\\
&\geqslant(\dfrac ba+\dfrac cb+\dfrac ac)^2\\
&\geqslant9
\end{align*}

Mobile version|Discuz Math Forum

2025-6-6 16:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit