Forgot password?
 Create new account
View 2108|Reply 3

[不等式] 来自人教论坛的简单三元不等式b^2/a+c^2/b+a^2/c

[Copy link]

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-5-3 19:45:04 |Read mode
Last edited by hbghlyj at 2025-4-5 02:51:19$\dfrac1a+\dfrac1b+\dfrac1c=1$$$\dfrac{b^2}a+\dfrac{c^2}b+\dfrac{a^2}c\ge9$$

700

Threads

110K

Posts

910K

Credits

Credits
94202
QQ

Show all posts

kuing Posted at 2014-5-3 19:45:58
这……太简单了吧……随手拿出N种“不同”证法啊……

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

 Author| 其妙 Posted at 2014-5-3 19:47:06
回复 2# kuing

主要是学学发这个标题,也让大家练练

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

 Author| 其妙 Posted at 2014-5-6 00:23:06
回复 3# 其妙
鸭血!这贴快沉了呀?赶快在那边粘贴一个解法过来!("$1$”的妙用)
\begin{align*}
\dfrac{b^2}a+\dfrac{c^2}b+\dfrac{a^2}c&=(\dfrac{b^2}a+\dfrac{c^2}b+\dfrac{a^2}c)(\dfrac1a+\dfrac1b+\dfrac1c)\\
&\geqslant(\dfrac ba+\dfrac cb+\dfrac ac)^2\\
&\geqslant9
\end{align*}

手机版Mobile version|Leisure Math Forum

2025-4-22 12:59 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list