Forgot password?
 Register account
View 2251|Reply 3

[不等式] 来自人教群的简单三元不等式xy/z+yz/x+zx/y

[Copy link]

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2014-5-5 16:01 |Read mode
Last edited by hbghlyj 2025-4-5 02:08
教师-tan9p(3653*****)  15:43:44
$x, y, z>0, x^2+y^2+z^2=1$ 求 $\frac{x y}{z}+\frac{y z}{x}+\frac{z x}{y}$ 的最小值
应该可以用cauchy做吧,自己不熟练,帮忙提示一下:)

Admin-kuing  15:54:33
@教师-tan9p
\begin{align*}
\left( \frac{xy}z+\frac{yz}x+\frac{zx}y \right)^2&=\sum\frac{x^2y^2}{z^2}+2\sum x^2 \\
& =\frac{x^4y^4+y^4z^4+z^4x^4}{x^2y^2z^2}+2\sum x^2 \\
& \geqslant \frac{x^2y^2z^2(x^2+y^2+z^2)}{x^2y^2z^2}+2\sum x^2 \\
& =3\sum x^2
\end{align*}

教师-tan9p(3653*****)  15:55:00
谢谢kuing版
这是mathtype?
Admin-kuing  15:56:33

教师-tan9p(3653*****)  15:57:31
我总觉得政不等式有种调整次数的感觉,找方向时,次数是不是可以提供思路呢?
Admin-kuing  16:00:23
不知道,这个第一眼就是平方,然后就水到渠成了

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

郝酒 Posted 2014-5-5 19:14
好奇地问下,QQ号是自动隐去的?
+++++++
好二 ,可以无视了~

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-5-5 23:58
好久没遇到这么菜的不等式了,我也来试试(复杂的不等式不会做):
\begin{align*}
\left( \frac{xy}z+\frac{yz}x+\frac{zx}y \right)^2
&\geqslant 3(\frac{xy}z\cdot\frac{yz}x+\frac{yz}x\cdot\frac{zx}y+\frac{xy}z\cdot\frac{zx}y) \\
&=3(y^2+z^2+x^2)\\
&=3
\end{align*}

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

 Author| kuing Posted 2014-5-6 00:35
回复 3# 其妙

Mobile version|Discuz Math Forum

2025-6-6 16:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit