Forgot password
 Register account
View 4220|Reply 13

[几何] 平几不会,求角度

[Copy link]

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2013-9-22 14:45 |Read mode
Last edited by realnumber 2013-9-22 14:51 QQ图片20130922142104.jpg QQ截图2013092214501812212.png

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-9-22 14:46
前两天才翻过贴子

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-9-22 14:49
这类题都比较经典,题目可能不一样但方法都差不多。
isea 可能能翻到更多的贴子

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-9-22 14:50
旧版论坛也有 kkkkuingggg.haotui.com/viewthread.php?tid=1450 里面也有一些链接及各种各样……

4

Threads

23

Posts

0

Reputation

Show all posts

pxchg1200 posted 2013-9-22 14:57
problem1-large.gif
Solution
1. Calculate some known angles:
\[\angle ACB = 180-(10+70)-(60+20) = 20^{°}\]
\[ \angle AEB = 180-70-(60+20) = 30^{°} \]
2. Draw a line from point $D$ parallel to $AB$, labeling the intersection with BC as a new point $F$ and conclude:
\[ \triangle DCF\sim \triangle ACB \]
\[\angle CFD = \angle CBA = 60+20 = 80^{\circ} \]
\[ \angle DFB = 180-80 = 100^{\circ} \]
\[ \angle CDF = \angle CAB = 70+10 = 80^{\circ}\]
\[ \angle ADF = 180-80 = 100^{\circ}\]
\[ \angle BDF = 180-100-20 = 60^{\circ} \]
3. Draw a line $FA$ labeling the intersection with $DB$ as a new point $G$ and conclude:
\[ \triangle ADF \cong \triangle BFD\]
\[ \angle AFD =\angle  BDF = 60^{\circ}\]
\[ \angle DGF = 180-60-60 = 60^{\circ} =\angle  AGB\]
\[ \angle GAB = 180-60-60 = 60^{\circ}\]
$ \triangle DFG $(with all angles $60^{\circ})$ is equilateral
$ \triangle AGB$ (with all angles $60^{\circ})$ is equilateral
4. $\triangle CFA$ with two $20^{\circ}$ angles is isosceles, so $FC = FA$

5. Draw a line $CG$, which bisects $\angle ACB$ and conclude:
\[\triangle ACG \cong \triangle CAE\]
\[ FC-CE = FA-AG = FE = FG\]
\[ FG = FD, \text{so}\qquad   FE = FD\]
6. With two equal sides, DFE is isosceles and conclude:
\[ \angle DEF = 30^{\circ}+x = (180-80)/2 = 50^{\circ}\]
\[ x=20^{\circ}\]

Let's solution say the method!

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2013-9-22 15:01

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-9-22 15:22
回复 7# Tesla35

我相信,没有最全,只有更全

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2013-9-22 15:40
Last edited by hbghlyj 2025-3-21 20:13
pxchg1200 发表于 2013-9-22 06:57
Solution
1. Calculate some known angles:
\[\angle ACB = 180-(10+70)-(60+20) = 20^{°}\]
\[ \angle A ...

还真是下面提到的变式。
旧版论坛也有 kkkkuingggg.haotui.com/viewthread.php?tid=1450  里面也有一些链接及各种各样……
kuing 发表于 2013-9-22 14:50

   



顶角20度等腰三角形,题常新呀,或者说变式真多。

此解法(里有经典的$CE=AB \iff \angle AEB=30^\circ $,很像出变式的感觉,或者说,命题者给的原配解答),仅一个轴对称就把所有问题解决。
解得好。

纯轴对称解法里又多一个经典素材与变式。(我就没想过让我去求这个20度角,因为有更好的30度可求嘛。)





------------------------
这样一看,还是kuing曾经帖2013年初提的这个难多了。

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2014-3-17 22:16
Last edited by isee 2014-3-18 15:38翻个老帖,一样题,kkkkuingggg.haotui.com/thread-1450-1-1.html,这里的6楼并是解答(原帖未解答)。

链接里相关是原型

============================

主楼(另解)。


snap.png



链接里的本楼题也可以这样证明:
如图三角形ABC中,AB=AC,∠A=20∘,∠BDE=20∘,∠ABD=10∘,求∠ACE。


snap.png

53

Threads

308

Posts

0

Reputation

Show all posts

踏歌而来 posted 2014-3-17 23:19
有点意思,这类题目很经典,很有难度。

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2014-10-3 23:37
再补充一个(不知有没有重复
$\angle EAC=\angle ECA=10^\circ,\angle DCB=40^\circ$,求证$BD=DE$。
211.png

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2014-10-4 02:35
回复 12# 乌贼
以$CE$为边向左作正$\triangle CEM$,连接$AM、BM、DM$,延长$AE$交$CM$于$N$,连接$DN、BN$。
$CD$垂直平分$DM$,有$DE=DM$,又$AE=EM\riff\angle MAB=\angle BAN,MN\perp AB$;有$AB$垂直平分$MN$,有$DM=DN$。
故$D$为$\triangle EMN$外接圆圆心。
又$\angle EBN=\angle EMN=60^\circ$,有$E、M、B、N$四点共圆,所以$DB$为外接圆半径,$DE=DB$
212.png

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2017-6-20 14:01

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2017-6-20 20:37

    forum.php?mod=viewthread&tid=2500&highlight=顶角为20度

    最常见的经常也写过。。。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:13 GMT+8

Powered by Discuz!

Processed in 0.023682 seconds, 49 queries