Forgot password
 Register account
View 244|Reply 2

[几何] 三角形中求角的值

[Copy link]

423

Threads

909

Posts

0

Reputation

Show all posts

lemondian posted 2024-12-26 20:46 |Read mode
如图,在$\triangle ABC$中,已知$\angle CAB=30^0,\angle CBA=80^0,DE\px AB,\angle ABD=\angle DBC$,求$\angle EAC$。
0122601.jpg

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-12-26 21:54
设所求角为 `x`,由平分线及平行易知 `\angle EDB=\angle EBD=40\du`,所以有
\begin{gather*}
ED=EB,\\
\frac{ED}{EA}=\frac{EB}{EA},\\
\frac{\sin x}{\sin150\du}=\frac{\sin(30\du-x)}{\sin80\du},\\
2\sin x\cos10\du=\sin(30\du-x),
\end{gather*}
显然 `x=10\du` 恰好符合两倍角公式,而左右单调性相反,故此为唯一解。

423

Threads

909

Posts

0

Reputation

Show all posts

original poster lemondian posted 2024-12-26 23:01
kuing 发表于 2024-12-26 21:54
设所求角为 `x`,由平分线及平行易知 `\angle EDB=\angle EBD=40\du`,所以有
\begin{gather*}
ED=EB,\\
原来如此!NB
我以为是用角元塞瓦定理来搞,结果弄不来。
不知有没有其它解法?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 11:02 GMT+8

Powered by Discuz!

Processed in 0.017756 seconds, 46 queries