Forgot password?
 Create new account
View 141|Reply 2

[几何] 三角形中求角的值

[Copy link]

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

lemondian Posted at 2024-12-26 20:46:08 |Read mode
如图,在$\triangle ABC$中,已知$\angle CAB=30^0,\angle CBA=80^0,DE\px AB,\angle ABD=\angle DBC$,求$\angle EAC$。
0122601.jpg

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2024-12-26 21:54:37
设所求角为 `x`,由平分线及平行易知 `\angle EDB=\angle EBD=40\du`,所以有
\begin{gather*}
ED=EB,\\
\frac{ED}{EA}=\frac{EB}{EA},\\
\frac{\sin x}{\sin150\du}=\frac{\sin(30\du-x)}{\sin80\du},\\
2\sin x\cos10\du=\sin(30\du-x),
\end{gather*}
显然 `x=10\du` 恰好符合两倍角公式,而左右单调性相反,故此为唯一解。

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

 Author| lemondian Posted at 2024-12-26 23:01:05
kuing 发表于 2024-12-26 21:54
设所求角为 `x`,由平分线及平行易知 `\angle EDB=\angle EBD=40\du`,所以有
\begin{gather*}
ED=EB,\\
原来如此!NB
我以为是用角元塞瓦定理来搞,结果弄不来。
不知有没有其它解法?

手机版Mobile version|Leisure Math Forum

2025-4-21 01:26 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list