Forgot password?
 Register account
View 1999|Reply 4

[几何] 初中几何一题,求角

[Copy link]

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

hbghlyj Posted 2020-2-6 16:29 |Read mode
QQ图片20200123152407.png
在$\triangle$ABC中,D,E分别在AB,AC上,$\angle$EBC=21°,$\angle$DCB=69°,$\angle$DEB=27°,$\angle$ADE=30°,求$\angle$BAC
转载自叶军数学工作站,2020.2.1

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

 Author| hbghlyj Posted 2020-2-6 17:14
$BE\bot CD$,C关于AB对称到C',对$\triangle$BEC'及D用角元塞瓦定理,只需证$\sin15°\sin27°\sin18°=\sin69°\sin48°\sin3°$.
由$\sin18°=\frac{1}{4} \left(\sqrt{5}-1\right)$得$\frac12+\sin18°=1-2\sin18°,\frac12+\sin18°=2\cos36°\sin30°,\frac12+\sin18°=\sin66°-\sin6°,\cos12°\sin18°=\cos66°\sin48°,(\cos12°-\cos42°)\sin18°=(\cos66°-\cos72°)\sin48°,\sin15°\sin27°\sin18°=\sin69°\sin48°\sin3°$

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

 Author| hbghlyj Posted 2020-2-6 17:15
三角运算后是显然的。
@乌贼
希望见到纯几何解法

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

 Author| hbghlyj Posted 2020-2-6 17:53
仿照2#又可得3种证法
B关于CD对称到B',对△B'CD与E用角元塞瓦定理,只需证$\sin24°\sin15°\sin21°=\sin63°\sin54°\sin3°$
...
D关于BE对称到D',对△D'BE与C用角元塞瓦定理,只需证$\sin18°\sin75°\sin63°=\sin21°\sin48°\sin87°$
...
E关于CD对称到E',对△E'CD与B用角元塞瓦定理,只需证$\sin54°\sin87°\sin27°=\sin69°\sin24°\sin75°$
...

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2020-2-11 20:09
Last edited by 乌贼 2020-2-11 20:24如图: 217.png
在$ BC $取点$ F $,使$ BF=BD $,作$ E $关于$ CD $的对称点$ P $($ P $在$ BE $上),作正$ \triangle DFQ $,$ DQ $的垂直平分线交$ DP $的延长线于$ M $,$ G $为$ DF $的中点。有\[ \angle BDM=\angle MQG=24\du  \]即$ DMQB $四点共圆,得\[ \angle DBM=\angle DQM=6\du \riff \angle DBP=\angle PBM=3\du \riff\dfrac{PM}{DP}=\dfrac{BM}{BD} \]再作$ \triangle BNF\cong \triangle BMD $,有\[ \triangle BMN\sim \triangle BDF\riff\dfrac{BM}{BD}=\dfrac{MN}{DF} \]又\[ \angle MNF=\angle MFN=72\du\riff MF=MN \]所以\[ \dfrac{PM}{DP}=\dfrac{BM}{BD}=\dfrac{MN}{DF}=\dfrac{MF}{DF} \]故\[ \angle DFP=\angle PFM=15\du \]最后\[ \angle MPF=\angle DCB=69\du \]即$ DPFC $四点共圆,因此\[ \angle DCP=\angle DFP=15\du\\\riff \angle DCE=\angle DCP=15\du  \]综上\[ \angle BAC=72\du  \]

Mobile version|Discuz Math Forum

2025-6-5 07:25 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit