|
original poster
yumath
posted 2014-6-13 20:29
Last edited by hbghlyj 2025-3-22 23:47已知函数
\[
\begin{aligned}
& f(x)=(\cos x-x)(\pi+2 x)-\frac{8}{3}(\sin x+1) \\
& g(x)=3(x-\pi) \cos x-4(1+\sin x) \ln \left(3-\frac{2 x}{\pi}\right)
\end{aligned}
\]
证明:
(I)存在唯一 $x_0 \in\left(0, \frac{\pi}{2}\right)$,使 $f\left(x_0\right)=0$;
( II )存在唯一 $x_1 \in\left(\frac{\pi}{2}, \pi\right)$,使 $g\left(x_1\right)=0$,且对( I )中的 $x_0$,有 $x_0+x_1<\pi$. |
|