Forgot password?
 Register account
View 5247|Reply 20

[不等式] 不等式群的不等式

[Copy link]

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

hjfmhh Posted 2015-6-19 22:01 |Read mode
Last edited by hbghlyj 2025-4-10 03:02设 $a, b, c \inR^{+}$,求 $\frac{a}{b+c}+\frac{b}{c+2 a}+\frac{c}{2 a+3 b}$ 的最小值

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-6-20 00:43
遇到四次方程,数据要改。

29

Threads

70

Posts

647

Credits

Credits
647

Show all posts

转化与化归 Posted 2015-6-20 08:46
Last edited by hbghlyj 2025-4-10 02:59回复 1# hjfmhh
用电脑拉了拉!$$y_\min= 0.96567$$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-6-20 13:10
回复 3# 转化与化归

它是方程 256x^4+1216x^3+1444x^2-840x-1853=0 的一个根

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-6-20 13:20
改成 $a$, $b$, $c\inR^+$ 求
\[\frac a{b+c}+\frac b{c+2a}+\frac c{2a+\color{red}5b}\]
的最小值就可以做了,大家不妨试试。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-6-20 18:14
分母换元可以做吧?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-6-20 18:53
回复 6# 其妙

certainly

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-6-20 21:04
回复  转化与化归

它是方程 $256x^4+1216x^3+1444x^2-840x-1853=0 $的一个根
kuing 发表于 2015-6-20 13:10
怎么能转化成这个四次的方程的根?有什么结论?

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

 Author| hjfmhh Posted 2015-6-20 21:14
回复 6# 其妙
令$b+c=x,c+2a=y,2a+5b=z$
则$a=\frac{z-5x+5y}{12},b=\frac{x+z-y}{6},c=\frac{5x+y-z}{6}$
$\frac{a}{b+c}+\frac{b}{c+2a}+\frac{c}{2a+5b}
=(\frac{z}{12x}+\frac{5x}{6z})+(\frac{5y}{12x}+\frac{x}{6y})+
(\frac{z}{6y}+\frac{y}{6z})-\frac{3}{4}$
之后直接均值不行,取等不能同时得到,怎么处理?

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

 Author| hjfmhh Posted 2015-6-20 21:21
回复 8# 其妙
同求kuing的解说

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-6-20 21:45
回复 9# hjfmhh
令$b+c=x,c+2a=y,2a+5b=z$
则$a=\frac{z-5x+5y}{12},b=\frac{x+z-y}{6},c=\frac{5x+y-z}{6}$
$\frac{a}{b+c}+\frac{b}{c+2a}+\frac{c}{2a+5b}
=(\frac{z}{12x}+\frac{5x}{6z})+(\frac{5y}{12x}+\frac{x}{6y})+
(\frac{z}{6y}+\frac{y}{6z})-\frac{3}{4}$
之后直接均值不行,取等不能同时得到,怎么处理?
hjfmhh 发表于 2015-6-20 21:14
令 $x/z=t^2/2$, $y/z=u^2/2$, $t$, $u>0$,则
\begin{align*}
\frac z{12x}+\frac{5x}{6z}+\frac{5y}{12x}+\frac x{6y}+\frac z{6y}+\frac y{6z}&=\frac1{6t^2}+\frac{5t^2}{12}+\frac{5u^2}{12t^2} +\frac{t^2}{6u^2}+\frac1{3u^2}+\frac{u^2}{12} \\
& =\frac{5u^2+2}{12}\left( \frac{t^2}{u^2}+\frac1{t^2} \right)+\frac1{3u^2}+\frac{u^2}{12} \\
& \geqslant \frac{5u^2+2}{6u}+\frac1{3u^2}+\frac{u^2}{12} \\
& =f(u),
\end{align*}
求导得
\[f'(u)=\frac u6+\frac56-\frac1{3u^2}-\frac2{3u^3}
=\frac{(u-1)(u^3+6u^2+6u+4)}{6u^3},\]
下略。

改数据之前也可以用一样的方法做,但求导后无法分解了,所以数据是得设计的。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2015-6-20 22:14
k,肯定用待定系数法,我觉着。。。

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

 Author| hjfmhh Posted 2015-6-20 23:08
kuing的解法没用待定系数法,他的换元减少了变元,比较好,不知道是不是常用换元,为什么右边写成$\frac{t^2}{2},\frac{u^2}{2}$,不写成t,u呢?。
取等条件是a:b:c=1:2:4,待定系数法不好弄吧

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-6-21 17:34
回复 13# hjfmhh
主要是隐含了一个条件$\dfrac yx \cdot \dfrac xz\cdot\dfrac zy=1 $,所以扎克(kuing)进行了一个换元,减少了一个未知数。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-6-21 18:05
回复 13# hjfmhh
令$b+c=x,c+2a=y,2a+5b=z$

则$a=\dfrac{z-5x+5y}{12},b=\dfrac{x+z-y}{6},c=\dfrac{5x+y-z}{6}$

$\dfrac{a}{b+c}+\dfrac{b}{c+2a}+\dfrac{c}{2a+5b}
=(\dfrac{z}{12x}+\dfrac{5x}{6z})+(\dfrac{5y}{12x}+\dfrac{x}{6y})+
(\dfrac{z}{6y}+\dfrac{y}{6z})-\dfrac{3}{4}$

${\kern 115pt}= (\dfrac{z}{12x}+\dfrac{2x}{6z})+(\dfrac{2y}{12x}+\dfrac{x}{6y})+ (\dfrac{z}{24y}+\dfrac{y}{6z})+(\dfrac{3z}{24y}+\dfrac{3x}{6z}+\dfrac{3y}{12x})-\dfrac{3}{4}$

${\kern 115pt}\geqslant\dfrac13+\dfrac13+\dfrac16+\dfrac34-\dfrac34 $

${\kern 115pt}=\dfrac56 $

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

 Author| hjfmhh Posted 2015-6-21 21:01
Last edited by hbghlyj 2025-4-10 03:01回复 15# 其妙


能不能直接令$\frac{a}{b+c}=x,\frac{b}{c+2a}=y,\frac{c}{2a+5b}=z$,
则原问题变为$x,y,z$是正实数,$2xy+2zx+5yz+12xyz=1$,求$x+y+z$的最小值

江苏刘双周老师解答
若 $x, y, z \in R^{+}$,且 $2 x y+5 y z+2 z x+12 x y z=1$ ,求 $x+y+z$ 的最小值。
解:令 $t=y+z$
\[
\begin{aligned}
& 1=2 x(y+z)+12 x y z+5 y z \leq 2 x(y+z)+3 x(y+z)^2+\frac{5}{4}(y+z)^2 \\
& \Rightarrow 4 \leq 8 x(y+z)+12 x(y+z)^2+5(y+z)^2 \Rightarrow 4 \leq 8 x t+12 x t^2+5 t^2 \\
& \Rightarrow\left(8 t+12 t^2\right) x \geq 4-5 t^2 \Rightarrow x \geq \frac{4-5 t^2}{8 t+12 t^2} \\
& \Rightarrow x+y+z \geq \frac{4-5 t^2}{8 t+12 t^2}+t=\frac{12 t^3+3 t^2+4}{8 t+12 t^2}=\frac{12 t^3+3 t^2+4}{4\left(2 t+3 t^2\right)}
\end{aligned}
\]
下面证 $\frac{12 t^3+3 t^2+4}{4\left(2 t+3 t^2\right)} \geq \frac{5}{6} \Leftrightarrow(3 t-2)^2(4 t+3) \geq 0$ 显然成立
当且仅当 $y=z=\frac{1}{3}, x=\frac{1}{6}$ 时取等号
能不能直接令$\frac{b}{a}=x,\frac{c}{b}=y,\frac{a}{c}=z$
则$\frac{1}{\frac{b}{a}+\frac{c}{a}}+\frac{1}{\frac{c}{b}+\frac{2a}{b}}+\frac{1}{\frac{2a}{c}+\frac{5b}{c}}=\frac{1}{x+xy}+\frac{1}{y+2yz}+\frac{1}{2z+5xz}$之后有好方法吗求教

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-6-21 22:40
回复 15# 其妙

这系数咋配的

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-6-21 23:38
回复 17# kuing

29

Threads

70

Posts

647

Credits

Credits
647

Show all posts

转化与化归 Posted 2015-6-22 09:07
Last edited by hbghlyj 2025-4-10 02:59回复 5# kuing
$\begin{aligned} & \because\left(\frac{a}{b+c}+\frac{b}{c+2 a}+\frac{c}{2 a+5 b}\right)(4 a(b+c)+4 b(c+2 a)+c(2 a+5 b)) \\ & \geq(2 a+2 b+c)^2=\frac{(2 a)^2+b^2}{2}+\frac{(2 a)^2+\left(\frac{1}{2} c\right)^2}{2}+\frac{(\sqrt{7} b)^2+\left(\frac{\sqrt{7}}{2} c\right)^2}{2}+4(2 a b+a c+b c) \\ & \geq \frac{5}{6}(12 a b+6 a c+9 b c) \\ & \therefore \frac{a}{b+c}+\frac{b}{c+2 a}+\frac{c}{2 a+5 b} \geq \frac{5}{6} . \quad(a: b: c=1: 2: 4)\end{aligned}$

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-7-2 22:00
Last edited by hbghlyj 2025-4-10 03:00\begin{aligned}
& \frac{a}{b+c}+\frac{b}{c+2 a}+\frac{c}{2 a+5 b}=\frac{a^2}{a b+a c}+\frac{b^2}{c b+2 a b}+\frac{\frac{1}{4} c^2}{\frac{1}{4}(2 a c+5 b c)} \geq \frac{\left(a+b+\frac{1}{2} c\right)^2}{3 a b+\frac{9}{4} b c+\frac{3}{2} c a} \\
& \text { 只需 } \frac{\left(a+b+\frac{1}{2} c\right)^2}{3 a b+\frac{9}{4} b c+\frac{3}{2} c a} \geq \frac{5}{6}
\\
&\text { 等价于以下三个式相加:}\\
& 12 a^2+3 b^2 \geq 12 a b \\
& 21 b^2+\frac{21}{4} c^2 \geq 21 b c \\
& \frac{3}{4} c^2+12 a^2 \geq 6 c a
\end{aligned}实际上是一样的

Mobile version|Discuz Math Forum

2025-5-31 11:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit