Forgot password?
 Register account
View 3212|Reply 13

[几何] 人教QQ群引出的一了个求角度的猜想:(2楼)(解答12#)

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2015-7-2 15:26 |Read mode
Last edited by isee 2015-7-4 14:34如图所示,$\triangle ABC,\angle CAB=30^\circ,\angle EAB=10^\circ,\angle B=70^\circ$,$CD$为角分线,求证:$DE\sslash AC.$



snap.png



此猜是正确的,暴力计算如下:

\begin{align*}
DE \sslash AC \iff \dfrac {CE}{EB}&=\dfrac {AD}{DB}\\
\iff \dfrac {AC\sin 20^\circ}{AB\sin 10^\circ}&=\dfrac {AC}{BC}\\
\iff \dfrac {\sin 20^\circ}{\sin 10^\circ}&=\dfrac {\sin 80^\circ}{\sin 30^\circ}\\
\iff 2\sin 10^\circ \sin 80^\circ&=\sin 20^\circ
\end{align*}

这显然是成立的,从而命题得证。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2015-7-2 15:52
Last edited by isee 2015-7-2 16:18其逆命题:


snapa.png


如图所示,$\triangle ABC,\angle DCA=\angle BCD=40^\circ,\angle B=70^\circ,DE\sslash AC$,求证:$AE=AC.$(即$\angle EAB=10^\circ.$)

这个如何证明?或者否定呢?

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2015-7-2 16:02
Last edited by isee 2015-7-2 17:442楼没有去求证$CD$是角分线,这是成立的,这是因为与1楼一般,过程反着写,会有\[\frac {\sin DCA}{\sin BCD}=1.\]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2015-7-2 16:09
Last edited by isee 2015-7-2 23:30哦,其原始题目是:(由于偶当时一眼觉图中的线是平行的,猜想结果是80度,但错了;故引出做平行线,实亦为轴对称的想法)


01.jpg



tzhp6666 自问自答如下:


01da.jpg

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2015-7-2 16:15
在顶楼的引理之下,一种并不简单的解决方法如下:

作角分线后,有平行线,于是证:图两阴影三角全等,之后就好办了。
02.png

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-7-2 22:27
李斌还不来呀?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-7-3 00:05
回复 4# isee

你看聊天记录不仔细,tzhp6666 不是自问自答的。首先是有人提问,接着有人看不清E点在哪,于是tzhp6666就发了上面这个图,随后也给解了。

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2015-7-3 01:10
回复 6# 其妙

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-7-3 22:32

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

v6mm131 Posted 2015-7-4 01:46
2_X)ATZ%SSJFTSOICB}4C.png

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2015-7-4 14:10
回复 10# v6mm131


    感谢解答4楼原始题,学习了。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2015-7-4 14:31
Last edited by isee 2015-7-6 11:11
其逆命题:


如图所示,$\triangle ABC,\angle DCA=\angle BCD=40^\circ,\angle B=70^\circ,DE\sslash  ...
isee 发表于 2015-7-2 15:52
接2楼:


snap02.png



将$\triangle AEB $沿$AB$对折,如图,则正$\triangle DEE'\Rightarrow CE=EE'\Rightarrow \angle CE'B=30^\circ=\angle CAB$,
即$C,A,E',B$四点共圆,进一步可得$\angle EAB=10^\circ$,命题得证。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2015-7-6 13:26
回复 12# isee


    接1楼,纯平几,现在只想到了同一法:如楼上先过E作ED'平行于AC,然后证AD'是三角形ABC的角分线。

   目前只好大约如此处理,个人。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-7-25 10:39
这儿有几道几何求角度“难题”:
blog.sina.com.cn/s/blog_71942ef00102vxif.html

Mobile version|Discuz Math Forum

2025-5-31 11:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit