Forgot password?
 Register account
View 1873|Reply 3

[不等式] 3元可转3角函数不等式

[Copy link]

29

Threads

53

Posts

675

Credits

Credits
675

Show all posts

wanhuihua Posted 2017-8-2 14:57 |Read mode
Last edited by hbghlyj 2025-3-19 18:54设 $x, y, z$ 为非负数且 $\sum x^2+x y z=4$
求证
$$\sum \sqrt{4-x^2} \geq \frac{\sqrt{3}}{3}\left(2 \sum x+\sum x y\right)$$(要求手工证明,计算量越小越好)

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2017-8-2 17:41
既然你都提到三角函数了,那就玩三角好了,挺简单的。

由条件可令 $x=2\cos A$, $y=2\cos B$, $z=2\cos C$, $A$, $B$, $C\in[0,\pi/2]$, $A+B+C=\pi$,则
\begin{align*}
\RHS&=\frac{4\sqrt3}3\left( \sum\cos A+\sum\cos A\cos B \right) \\
&=\frac{4\sqrt3}3\left( \sum(\sin B\sin C-\cos B\cos C)+\sum\cos A\cos B \right) \\
&=\frac{4\sqrt3}3\sum\sin B\sin C \\
&\leqslant \frac{4\sqrt3}9\left( \sum\sin A \right)^2 \\
&\leqslant \frac{4\sqrt3}9\cdot \frac{3\sqrt3}2\sum\sin A \\
&=2\sum\sin A\\
&=\LHS.
\end{align*}

29

Threads

53

Posts

675

Credits

Credits
675

Show all posts

 Author| wanhuihua Posted 2017-8-2 19:31
Last edited by hbghlyj 2025-3-19 18:55楼上证的非常好。进一步的问题很有意思
设 $x, y, z$ 为非负数且 $\sum x^2+x y z=4$
求证
\[
\sum\sqrt{4-x^2} \geq \sqrt{3}\left(k \sum x+(1-k) \sum x y\right)
\]
手工能证明的K最大可以是多少呢,大家一起来玩玩
机器出的数据最佳 $k \in[0.95,1]$,也是平凡值此时 $x, y, z$ 为 $\sqrt{2}, \sqrt{2}, 0$

29

Threads

53

Posts

675

Credits

Credits
675

Show all posts

 Author| wanhuihua Posted 2017-8-3 15:23
Last edited by hbghlyj 2025-3-19 18:54设 $x, y, z$ 为非负数且 $\sum x^2+x y z=4$
求证
$$\sum\sqrt{4-x^2} \geq \frac{\sqrt{3}}{4}\left(3 \sum x+\sum x y\right)$$
(要求手工证明,计算量越小越好)

Mobile version|Discuz Math Forum

2025-6-5 07:53 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit