Forgot password?
 Create new account
View 1732|Reply 3

[不等式] 3元可转3角函数不等式

[Copy link]

30

Threads

52

Posts

675

Credits

Credits
675

Show all posts

wanhuihua Posted at 2017-8-2 14:57:56 |Read mode
Last edited by hbghlyj at 2025-3-19 18:54:38设 $x, y, z$ 为非负数且 $\sum x^2+x y z=4$
求证
$$\sum \sqrt{4-x^2} \geq \frac{\sqrt{3}}{3}\left(2 \sum x+\sum x y\right)$$(要求手工证明,计算量越小越好)

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2017-8-2 17:41:01
既然你都提到三角函数了,那就玩三角好了,挺简单的。

由条件可令 $x=2\cos A$, $y=2\cos B$, $z=2\cos C$, $A$, $B$, $C\in[0,\pi/2]$, $A+B+C=\pi$,则
\begin{align*}
\RHS&=\frac{4\sqrt3}3\left( \sum\cos A+\sum\cos A\cos B \right) \\
&=\frac{4\sqrt3}3\left( \sum(\sin B\sin C-\cos B\cos C)+\sum\cos A\cos B \right) \\
&=\frac{4\sqrt3}3\sum\sin B\sin C \\
&\leqslant \frac{4\sqrt3}9\left( \sum\sin A \right)^2 \\
&\leqslant \frac{4\sqrt3}9\cdot \frac{3\sqrt3}2\sum\sin A \\
&=2\sum\sin A\\
&=\LHS.
\end{align*}

30

Threads

52

Posts

675

Credits

Credits
675

Show all posts

 Author| wanhuihua Posted at 2017-8-2 19:31:19
Last edited by hbghlyj at 2025-3-19 18:55:40楼上证的非常好。进一步的问题很有意思
设 $x, y, z$ 为非负数且 $\sum x^2+x y z=4$
求证
\[
\sum\sqrt{4-x^2} \geq \sqrt{3}\left(k \sum x+(1-k) \sum x y\right)
\]
手工能证明的K最大可以是多少呢,大家一起来玩玩
机器出的数据最佳 $k \in[0.95,1]$,也是平凡值此时 $x, y, z$ 为 $\sqrt{2}, \sqrt{2}, 0$

30

Threads

52

Posts

675

Credits

Credits
675

Show all posts

 Author| wanhuihua Posted at 2017-8-3 15:23:28
Last edited by hbghlyj at 2025-3-19 18:54:57设 $x, y, z$ 为非负数且 $\sum x^2+x y z=4$
求证
$$\sum\sqrt{4-x^2} \geq \frac{\sqrt{3}}{4}\left(3 \sum x+\sum x y\right)$$
(要求手工证明,计算量越小越好)

手机版Mobile version|Leisure Math Forum

2025-4-21 01:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list