Forgot password?
 Register account
View 2114|Reply 4

[几何] 顶角为20度的等腰三角形求与外心相关的角

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-8-28 10:14 |Read mode
Last edited by hbghlyj 2025-5-3 22:43

点$O$是$\triangle ABC$的外心,$BD$为$\triangle ABC$的角分线,若$AB=AC,\angle A=20^{\circ}$,求$\angle ODA$.


暂想出一个三角证明。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2017-8-28 13:08
Last edited by hbghlyj 2025-5-3 22:55

在$AC$上取点$E$,使$\triangle AEO$为等腰三角形,记$$AE=x,CD=y,ED=z.$$
由$BD$为角分线有$$\frac y{x+z}=\frac {BC}{BA}=\frac {\sin 20^{\circ}}{\sin 80^{\circ}}=\frac {\sin 20^{\circ}}{\cos 10^{\circ}}.$$
连接$OC$,由于$O$点为三角形$ABC$的外心,故$AO=OC$,于是在$\triangle AOC$中$$\frac x{y+z}=\frac {AO\sin AOE}{OC \sin EOC}=\frac {\sin 10^\circ}{\sin 150^\circ}=2\sin 10^\circ.$$
由正弦倍角公式,得$$\sin 20^\circ=2\sin10^\circ\cos 10^\circ\iff \frac {\sin 20^{\circ}}{\cos 10^{\circ}}=2\sin 10^\circ.$$
从而$$\frac y{x+z}=\frac x{y+z}\iff (x-y)(x+y+z)=0\iff x=y.$$即$$AE=CD.$$这表明$$\triangle EAO\cong\triangle DCO.$$进一步,有$$\angle ODA=20^\circ.$$

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2017-8-29 10:36
Last edited by hbghlyj 2025-5-3 23:13

\begin{aligned}
\frac{\sin \theta}{\sin \beta}=\frac{C D}{A D} & =\frac{\sin 20^{\circ}}{\sin 80^{\circ}}=2 \sin 10^{\circ} \quad, \quad \theta+\beta=160^{\circ} . \\
\Rightarrow \sin \theta & =2 \sin 10^{\circ} \sin \left(160^{\circ}-\theta\right) \\
& =2 \sin 10^{\circ}\left(\sin 20^{\circ} \cos \theta+\cos 20^{\circ} \sin \theta\right) \\
\Rightarrow \tan \theta & =\frac{2 \sin 10^{\circ} \sin 20^{\circ}}{1-2 \sin 10^{\circ} \cos 20^{\circ}}=\frac{\sin 10^{\circ} \sin 20^{\circ}}{\sin 30^{\circ}-\sin 10^{\circ} \cos 20^{\circ}} \\
& =\frac{\sin 10^{\circ} \sin 20^{\circ}}{\sin \left(10^{\circ}+20^{\circ}\right)-\sin 10^{\circ} \cos 20^{\circ}} \\
& =\frac{\sin 10^{\circ} \sin 20^{\circ}}{\sin 20^{\circ} \cos 10^{\circ}}=\tan 10^{\circ} .
\end{aligned}

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2017-8-29 11:57
原来那些都是纸老虎,

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2017-11-7 02:03
211.png
连接$ AO,BO,CO $,$ G $为$ CO $与$ BD $交点,作$ DE\perp BO $交$ AB $于$ E $。易证\[ \angle DEG=\angle DCG =10\du \]
延长$ AO $交$ DE $于$ F $,连接$ BF $,$ \triangle ADB $中由你角平分线定理得\[ \angle ABF=20\du  \]易知\[ \angle BOE=20\du  \]所以$ \angle EOG=\angle EDG =60\du $,即$ EODG $四点共圆,有\[ \angle DOG=\angle DEG=\angle DCG =10\du \]

Mobile version|Discuz Math Forum

2025-5-31 10:44 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit