Forgot password?
 Register account
View 1775|Reply 1

[不等式] 三元不等式

[Copy link]

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

v6mm131 Posted 2017-8-31 21:25 |Read mode
若$ x, y, z >0 $,证明:$ \dfrac{3}{2(x+y+z)} \le \sum \dfrac{1}{3(y+z)+(\sqrt{x+y}-\sqrt{x+z})^2} $

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-8-31 21:28
若$ x, y, z >0 $,证明:
\[{\it \sum} \left( {\frac {x}{y+z+ \left( 1+\frac{2}{3}\,\sqrt {2} \right)
\left( \sqrt {x+y}-\sqrt {z+x} \right) ^{2}}} \right) \geq \frac{3}{2}\]

Mobile version|Discuz Math Forum

2025-5-31 10:46 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit