Forgot password?
 Register account
View 2454|Reply 13

[几何] 等腰三角形求线段长(有图)

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-9-15 17:08 |Read mode
Last edited by hbghlyj 2025-3-22 00:36在$\triangle ABC$中,$AB=AC$且$\angle BAC=\pi/7$,点$D$为$BC$上一点,若$AD=BC=1$,求$CD$的长。

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2017-9-16 11:06
三角法很容易求得 $CD=\sqrt2$

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2017-9-16 11:19
回复 2# hejoseph


    有结果了,期待平几。。。。。

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2017-9-18 10:20
回复 2# hejoseph


    怎么算的?

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2017-9-18 12:37
回复 4# 游客
设 $\theta=\pi/7$,容易得
\[
AB=AC=\frac{1}{2}\sec 3\theta,
\]
所以
\[
BD=\frac{1}{2}\sec 3\theta-1,
\]
由余弦定理得
\begin{align*}
CD^2&=BC^2+BD^2-2\cdot BC\cdot BD\cos 3\theta\\
&=\frac{8\cos^3 3\theta+4\cos^2 3\theta-4\cos 3\theta+1}{4\cos^2 3\theta},
\end{align*}
设 $x=3\theta$,$\cos x=t$,则
\[
CD^2=\frac{8t^3+4t^2-4t+1}{4t^2},
\]
因为
\[
\cos 3x+\cos 4x=0,
\]
所以
\[
4t^3-3t+2\left(2t^2-1\right)^2-1=0,
\]
左边因式分解,得
\[
(t+1)\left(8t^3-4t^2-4t+1\right)=0,
\]
由此得
\[
8t^3-4t^2-4t+1=0,
\]
所以
\[
CD^2=2。
\]

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1 好解

View Rating Log

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2017-9-18 22:37
回复 4# 游客


    其实很难算,我算过,无果。

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2017-10-29 02:45
Last edited by 乌贼 2017-10-29 03:06过$ B $作$ BE $交$ AC $于$ E $,$ \angle EBC=\dfrac{\pi}{7} $,再作$ ED $交$ AB $于$ D $,$ \angle AED=\dfrac{\pi}{7} $,有\[ AD=DE=EB=BC=1 \]
如图: 211.png
作$ DF=CF=1 $,连接$ AF ,EF$,作$ DM\perp AC $分别交$ AC,AF $于$ N、M $,连接$ EM,FN $,有\[ \angle DEM=\angle DAM=\angle DFM \]有$ DEFM $四点共圆则有\[ \angle MDF=\angle MEF=\angle 2\]
又\[ \triangle ABC\sim \triangle BCE\riff \dfrac{AC}{BC}=\dfrac{BC}{CE} \]即\[ \dfrac{AC}{CF}=\dfrac{CF}{CE}\riff \triangle ACF\sim\triangle  FCE\riff\angle EFC=\angle FAC=\angle AEM=\angle 1 \]故\[ \angle NCF=\angle MEF=\angle MDF =\angle 2\]也就是$ NDCF $四点共圆,有$ \triangle DFC $为直角等腰三角形

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1 漂亮

View Rating Log

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2017-10-29 09:24
回复 7# 乌贼

啧啧,绝对网上首个平几证明!先赞后看。

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2017-10-29 09:40
回复 7# 乌贼
212.png
哎,画蛇添足了,令\[ AE=2b,EC=a \]有\[ \triangle ABC\sim \triangle BCE\riff \dfrac{AC}{BC}=\dfrac{BC}{CE}\riff a^2+2ab=1\]得\[ CD^2=DN^2+CN^2=ED^2-ED^2+(CE+EN)^2=1+a^2+2ab=2 \]

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1 这三个等腰,妙

View Rating Log

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2017-10-29 11:01
回复 9# 乌贼

这个也漂亮。那四线相等,与顶角是20度时一模样。

如此一看,此题是容易的,哈哈。

48

Threads

77

Posts

778

Credits

Credits
778

Show all posts

longzaifei Posted 2017-10-30 14:37
回复 7# 乌贼

为什么     $  \angle AED=\dfrac{\pi}{7}  $

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2017-10-30 15:39
回复 11# longzaifei
看7楼,$E,D$点都是作出来的,先作$E$点,再作$D$点。(或者说$E,F$点都是作出来,$D,F$重合)

48

Threads

77

Posts

778

Credits

Credits
778

Show all posts

longzaifei Posted 2017-10-30 17:45
Last edited by hbghlyj 2025-3-22 00:13回复 12# 乌贼
后来明白了,谢谢!

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2017-10-31 15:32
Last edited by hbghlyj 2025-3-22 00:16
乌贼 发表于 2017-10-29 01:40
哎,画蛇添足了,令\[ AE=2b,EC=a \]有\[ \triangle ABC\sim \triangle BCE\riff \dfrac{AC ...
冯贝叶说“编者目前不知道任何纯几何的证明方法,如果有读者发现有这种证法,欢迎告知编者,编者将不胜感谢fby@amss.ac.cn

乌贼你可以发一个

Mobile version|Discuz Math Forum

2025-5-31 10:54 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit