|
乌贼
Posted 2017-10-29 02:45
Last edited by 乌贼 2017-10-29 03:06过$ B $作$ BE $交$ AC $于$ E $,$ \angle EBC=\dfrac{\pi}{7} $,再作$ ED $交$ AB $于$ D $,$ \angle AED=\dfrac{\pi}{7} $,有\[ AD=DE=EB=BC=1 \]
如图:
作$ DF=CF=1 $,连接$ AF ,EF$,作$ DM\perp AC $分别交$ AC,AF $于$ N、M $,连接$ EM,FN $,有\[ \angle DEM=\angle DAM=\angle DFM \]有$ DEFM $四点共圆则有\[ \angle MDF=\angle MEF=\angle 2\]
又\[ \triangle ABC\sim \triangle BCE\riff \dfrac{AC}{BC}=\dfrac{BC}{CE} \]即\[ \dfrac{AC}{CF}=\dfrac{CF}{CE}\riff \triangle ACF\sim\triangle FCE\riff\angle EFC=\angle FAC=\angle AEM=\angle 1 \]故\[ \angle NCF=\angle MEF=\angle MDF =\angle 2\]也就是$ NDCF $四点共圆,有$ \triangle DFC $为直角等腰三角形 |
Rate
-
View Rating Log
|