Forgot password?
 Register account
View 1805|Reply 5

[组合] 组合数求和

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2018-1-24 13:03 |Read mode
Last edited by hbghlyj 2025-3-22 00:01求: $ 2 C_1^1 C_{n-2}^1+3 C_2^1 C_{n-3}^1+4 C_3^1 C_{n-4}^1+\cdots+(n-1) C_{n-2}^1 C_1^1$

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2018-1-24 15:01
回复 1# aishuxue


    倒序相加.

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2018-1-24 15:05
擦,上标全是1,写成组合数有啥意思……

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2018-1-24 15:11
Last edited by hbghlyj 2025-3-22 00:01回复 3# 色k


    可能是某种解法的提示,不过看着是眼花.
$\begin{aligned} & 2 C_1^1 C_{n-2}^1+3 C_2^1 C_{n-3}^1+4 C_3^1 C_{n-4}^1+\cdots+(n-1) C_{n-2}^1 C_1^1 \\ & =2\left(C_2^2 C_{n-2}^1+C_3^2 C_{n-3}^1+C_4^2 C_{n-4}^1+\cdots+C_{n-1}^2 C_1^1\right) \\ & =2(n+1)\left(C_2^2+C_3^2+C_4^2+\cdots+C_{n-1}^2\right) \\ & -2\left(3 C_2^2+4 C_3^2+5 C_4^2+\cdots+n C_{n-1}^2\right) \\ & =2(n+1) C_n^3-2 \times 3\left(C_3^3+C_4^3+C_5^3+\cdots+C_n^3\right) \\ & =2(n+1) C_n^3-6 C_{n+1}^4\end{aligned}$
不知道有没有写错,已经眼花了.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-1-24 15:57
回复 4# 游客

这样写的话,到第二行的时候,这帖 forum.php?mod=viewthread&tid=4646 的4楼的推广式就可以派上用场了,让那里的 {r,s,n} 代入 {2,1,n-3} 即得结果为 $2C_{n+1}^4$。

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2018-1-24 16:09
回复 5# kuing


    恩,我的式子最后还要再写一步,答案一样,应该没写错.

Mobile version|Discuz Math Forum

2025-5-31 10:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit