|
original poster
wanhuihua
posted 2018-3-1 10:22
Last edited by hbghlyj 2025-4-14 00:04上面的证明实际上是调整法。(c+a)(c+b)>=(sqrt(ab) +c)^2 ,当a=b时成立。
设$x,y,z$为正数,且$x + y + z = 3$
求证:$\frac{{\text{9}}}{4}\, + \frac{1}
{{x^2 }} + \frac{1}
{{y^2 }} + \frac{1}
{{z^2 }} \geqslant \frac{7}
{4}(\,\frac{1}
{{xy}} + \,\frac{1}
{{yz}} + \,\frac{1}
{{zx}}) $
证明:不妨设$x \leqslant y \leqslant z$
记$f(x,y) = \frac{{\text{9}}}
{4}\, + \frac{1}
{{x^2 }} + \frac{1}
{{y^2 }} + \frac{1}
{{z^2 }} - \frac{7}
{4}(\,\frac{1}
{{xy}} + \,\frac{1}
{{yz}} + \,\frac{1}
{{zx}})$,
则$t = f(x,y)- f{\text{(}}\frac{{x{\text{ + }}y}}
{2}{\text{,}}\frac{{x{\text{ + }}y}}
{2}{\text{) = }}\frac{1}
{{x^2 }} + \frac{1}
{{y^2 }} - \frac{8}
{{(x + y)^2 }} - \frac{7}
{4}(\,\frac{{x + y + z}}
{z})(\frac{1}
{{xy}} - \frac{4}
{{(x + y)^2 }})$
$\geqslant \frac{1}{x^2 } + \frac{1}{y^2 } - \frac{8}
{(x + y)^2 } - \frac{21}{4}(\frac{1}{xy} - \frac{4}{(x + y)^2 })$
$t \geqslant 0 \Leftrightarrow \left( {4\,x^2 - 5\,xy + 4\,y^2 } \right)\left( {x - y} \right)^2 \geqslant 0$显然成立
只需证$x=y$时:
$f\frac{{81}}
{{4{\cal (}x{\text{ + }}y{\text{ + }}z{\cal )}^2 }}\, + \frac{1}
{{x^2 }} + \frac{1}
{{y^2 }} + \frac{1}
{{z^2 }}{\text{ - }}\frac{7}
{4}(\,\frac{1}
{{xy}} + \,\frac{1}
{{yz}} + \,\frac{1}
{{zx}}) \geqslant 0$成立。
$f \geqslant 0 \Leftrightarrow (4x - z)^2 (x - z)^2 \geqslant 0$ 显然。 |
|