Forgot password
 Register account
View 1967|Reply 4

[不等式] 3元双等经典不等式

[Copy link]

29

Threads

53

Posts

1

Reputation

Show all posts

wanhuihua posted 2018-2-23 22:55 |Read mode
Last edited by hbghlyj 2025-4-14 00:05设$x,y,z$ 为正数,且$x+y+z=3$
求证:
${9 \over 4}\, + {1 \over {x^2 }} + {1 \over {y^2 }} + {1 \over {z^2 }} \ge {7 \over 4}(\,{1 \over {xy}} + \,{1 \over {yz}} + \,{1 \over {zx}})$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-2-28 21:59
看看这样O不OK。

证明:令 $x=1/a$, $y=1/b$, $z=1/c$,则条件化为 $a$, $b$, $c>0$, $ab+bc+ca=3abc$,待证的不等式等价于
\[\frac94\left( \frac{3abc}{ab+bc+ca} \right)^2+a^2+b^2+c^2\geqslant\frac74(ab+bc+ca),\]

\[\frac{81}4\left( \frac{abc}{ab+bc+ca} \right)^2+(a+b+c)^2\geqslant\frac{15}4(ab+bc+ca).\]

由对称性不妨设 $c=\min\{a,b,c\}$,记 $u=\sqrt{(c+a)(c+b)}$,则上式化为
\[\frac{81}4\left( \frac{abc}{u^2-c^2} \right)^2+\left( \frac{u^2-ab}c \right)^2\geqslant\frac{15}4(u^2-c^2),\]

\[f(x)=\frac{81}4\left( \frac{xc}{u^2-c^2} \right)^2+\left( \frac{u^2-x}c \right)^2,\]
显然 $f(x)$ 为关于 $x$ 的开口向上的二次函数,不难计算出其对称轴为
\[x=\frac{4u^2(u^2-c^2)^2}{85c^4-8c^2u^2+4u^4},\]
下面证明
\[ab\leqslant(u-c)^2
<\frac{4u^2(u^2-c^2)^2}{85c^4-8c^2u^2+4u^4},\quad(*)\]
左边由
\[u=\sqrt{(c+a)(c+b)}\geqslant c+\sqrt{ab}\]
即得,而右边约去 $(u-c)^2$ 后去分母展开等价于
\[85c^3<8u^3+12cu^2,\]
由 $c=\min\{a,b,c\}$ 知 $u\geqslant2c$,由此易知上式成立,所以式 (*) 得证,由此即得 $f(ab)\geqslant f\bigl((u-c)^2\bigr)$,故此要证原不等式只需证
\[\frac{81}4\left( \frac{(u-c)^2c}{u^2-c^2} \right)^2+\left( \frac{u^2-(u-c)^2}c \right)^2\geqslant\frac{15}4(u^2-c^2),\]
化简后作差分解等价于
\[\frac{(u-2c)^2(u-5c)^2}{4(u+c)^2}\geqslant0,\]
显然成立,所以原不等式获证。

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2018-2-28 23:29
回复 2# kuing

这个对称轴是我见过最复杂的了

29

Threads

53

Posts

1

Reputation

Show all posts

original poster wanhuihua posted 2018-3-1 10:22
Last edited by hbghlyj 2025-4-14 00:04
看看这样O不OK。

证明:令 $x=1/a$, $y=1/b$, $z=1/c$,则条件化为 $a$, $b$, $c>0$, $ab+bc+ca=3abc$,待 ...
kuing 发表于 2018-2-28 21:59
上面的证明实际上是调整法。(c+a)(c+b)>=(sqrt(ab) +c)^2 ,当a=b时成立。
设$x,y,z$为正数,且$x + y + z = 3$
求证:$\frac{{\text{9}}}{4}\, + \frac{1}
{{x^2 }} + \frac{1}
{{y^2 }} + \frac{1}
{{z^2 }} \geqslant \frac{7}
{4}(\,\frac{1}
{{xy}} + \,\frac{1}
{{yz}} + \,\frac{1}
{{zx}}) $
证明:不妨设$x \leqslant y \leqslant z$
记$f(x,y) = \frac{{\text{9}}}
{4}\, + \frac{1}
{{x^2 }} + \frac{1}
{{y^2 }} + \frac{1}
{{z^2 }} - \frac{7}
{4}(\,\frac{1}
{{xy}} + \,\frac{1}
{{yz}} + \,\frac{1}
{{zx}})$,  
则$t = f(x,y)- f{\text{(}}\frac{{x{\text{ + }}y}}
{2}{\text{,}}\frac{{x{\text{ + }}y}}
{2}{\text{) = }}\frac{1}
{{x^2 }} + \frac{1}
{{y^2 }} - \frac{8}
{{(x + y)^2 }} - \frac{7}
{4}(\,\frac{{x + y + z}}
{z})(\frac{1}
{{xy}} - \frac{4}
{{(x + y)^2 }})$
$\geqslant \frac{1}{x^2 } + \frac{1}{y^2 } - \frac{8}
{(x + y)^2 } - \frac{21}{4}(\frac{1}{xy} - \frac{4}{(x + y)^2 })$
$t \geqslant 0 \Leftrightarrow \left( {4\,x^2  - 5\,xy + 4\,y^2 } \right)\left( {x - y} \right)^2  \geqslant 0$显然成立
只需证$x=y$时:
$f\frac{{81}}
{{4{\cal (}x{\text{ + }}y{\text{ + }}z{\cal )}^2 }}\, + \frac{1}
{{x^2 }} + \frac{1}
{{y^2 }} + \frac{1}
{{z^2 }}{\text{ - }}\frac{7}
{4}(\,\frac{1}
{{xy}} + \,\frac{1}
{{yz}} + \,\frac{1}
{{zx}}) \geqslant 0$成立。
$f \geqslant 0 \Leftrightarrow (4x - z)^2 (x - z)^2  \geqslant 0$ 显然。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-3-1 11:58
回复 4# wanhuihua

嗯,我一开始想减少分式就作了倒代换,再调整,没想到直接调原来也这么简单。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:18 GMT+8

Powered by Discuz!

Processed in 0.017290 seconds, 43 queries