Forgot password?
 Register account
View 1925|Reply 2

[几何] 双曲线相关的三角形的面积最小值

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2019-5-26 11:09 |Read mode
请教大家一题:
已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,右焦点$F(c,0)$,在其右准线$x=\frac{a^2}{c}$上任取一点$P(\frac{a^2}{c},t)$,作双曲线的两条切线,切点分别为$A,B$,则$\triangle PAB$的面积是否有最小值?若有,如何求得?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-5-26 14:18
真讨厌(ノω<。)ノ))☆.。居然不限制切点在同一支上,那就要讨论了……
如果在同一支上,那是非常简单,事关 `PF\perp AB`,则 `2S=PF\cdot AB`,而显然当 `P` 在 `x` 轴上时两者同时最小,所以同一支上时就解决了。
如果是异支,`AB` 的最小就不一定是那个时候了……暂且弃坑……

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2019-5-26 22:06
回复 2# kuing
哦,没看到原来是垂直来的,唉,算死我了

Mobile version|Discuz Math Forum

2025-5-31 11:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit