Forgot password?
 Register account
View 1083|Reply 7

[几何] C是双曲线上的动点 求AC/BC的范围

[Copy link]

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2021-5-31 15:03 |Read mode

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2021-5-31 15:10
莫非又得像 forum.php?mod=viewthread&tid=7869 那样凑?

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

 Author| hbghlyj Posted 2021-5-31 15:20
Last edited by hbghlyj 2021-5-31 15:34仿照Kuing的做法,如下
最大值$\left\{\frac{1}{45} \left(37+8 \sqrt{10}\right),\left\{x\to 3 \sqrt{\frac{2}{5}},y\to \sqrt{\frac{2}{5}}\right\}\right\}$
证明:
\[\left(x+\frac{21}{10}\right)^2+\left(y-\frac{2}{10}\right)^2-\frac{37+8 \sqrt{10}}{45}  \left(\left(x+\frac{15}{10}\right)^2+(y-1)^2\right)\\=\frac{-\sqrt{10}-8}{15} \left(\frac{x^2}{2}-2 y^2-1\right)+\frac{-13 \sqrt{10}+40}{90} \left(x-3 \sqrt{\frac{2}{5}}\right)^2+\frac{2}{45} \left(-7 \sqrt{10}-20\right) \left(y-\sqrt{\frac{2}{5}}\right)^2\]


最小值$\left\{\frac{1}{45} \left(37-8 \sqrt{10}\right),\left\{x\to -3 \sqrt{\frac{2}{5}},y\to -\sqrt{\frac{2}{5}}\right\}\right\}$
证明:
\[\left(x+\frac{21}{10}\right)^2+\left(y-\frac{2}{10}\right)^2-\frac{37-8 \sqrt{10}}{45}  \left(\left(x+\frac{15}{10}\right)^2+(y-1)^2\right)\\=\frac{\sqrt{10}-8}{15} \left(\frac{x^2}{2}-2 y^2-1\right)+\frac{13 \sqrt{10}+40}{90} \left(x+3 \sqrt{\frac{2}{5}}\right)^2+\frac{2}{45} \left(7 \sqrt{10}-20\right) \left(y+\sqrt{\frac{2}{5}}\right)^2\]

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

 Author| hbghlyj Posted 2021-5-31 15:36
回复 2# kuing
话说,数据背后,"特殊的几何性质"是什么呢

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2021-5-31 15:44
回复 4# hbghlyj

不知道

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

 Author| hbghlyj Posted 2021-6-1 11:41
Last edited by hbghlyj 2021-6-1 12:065楼
类似解法出于数学吧(帖子1的15楼|帖子2),再间接被传到纯几何吧了呢
另外,在2楼,题主提示我们看5170,在6楼的评论区,题主提示“作CBD∽CAB(逆相似),则D的轨迹是圆”

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

 Author| hbghlyj Posted 2021-6-1 12:03
Last edited by hbghlyj 2021-6-1 12:25
A是Poncelet点,B是等角中心,AC/BC最大相当于某个离心率最小的二次曲线,就是Gergonne-Steiner二次曲线,因此C就是对径点
链接中的相关性质:
新建位图图像.gif

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2023-1-7 18:13
hbghlyj 发表于 2021-6-1 12:03
链接中的相关性质:
这些又有什么特殊的几何性质呢?

Mobile version|Discuz Math Forum

2025-6-5 19:33 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit