Forgot password
 Register account
View 215|Reply 0

[函数] 怎么证明 sin 1/3>1/π

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2022-11-5 23:17 |Read mode
源自知乎提问


:怎么证明sin1/3>1/π?







因为(观察出) \[\sin\frac 13= \sin x\Big|_0^\frac13>\frac 3\pi x\Big|_0^\frac 13=\frac1\pi,{~}\sin 0=\frac 3\pi\cdot 0,\] 且 $y=\sin x$ , $y''=-\sin x<0,\,x \in (0,1/3)$ 即函数图象上凸,另一方面 $\sin \dfrac\pi6=\dfrac 12=\dfrac3\pi\cdot \dfrac\pi6 $ 所以猜测有 \[\sin x>\frac 3\pi x, \, x\in (0,\pi/6)\] 需要构造 \[g(x)=\sin x-\frac3\pi x,\,x\in (0,\pi/6)\]其最后的完善及严密的证明可参照 琴吹紬的回答.

动笔(或心算后)就能明白,如果直接求导 $g(x)$ 其导数的正负是很难判断的,于是,继续转化为 \[h(x)=\frac {\sin x}x-\frac3\pi,\,x\in (0,\pi/6)\] 此时 \[h'(x)=\frac {\cos x\big(x-\tan x\big)}{x^2}<0,\,x\in (0,\pi/6)\] 即 $h(x)$ 在 $(0,\pi/6)$ 是减函数,从而 \[h(1/3)>h(\pi/6)=0\Rightarrow \sin\frac 13>\frac 1\pi.\]
isee=freeMaths@知乎

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-23 10:06 GMT+8

Powered by Discuz!

Processed in 0.018193 seconds, 43 queries