Forgot password?
 Register account
View 897|Reply 17

[函数] 取整函数的性质证明

[Copy link]

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

hjfmhh Posted 2025-5-1 23:32 |Read mode
Last edited by hbghlyj 2025-5-2 09:48取整函数的性质$$\left[\frac{[x]}{n}\right]=\left[\frac{x}{n}\right], x \inR, n \inN^*$$
该性质怎么证明?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-5-2 00:02
设 $x = k + f$,其中 $k = \lfloor x \rfloor$ 是整数部分,$0 \leq f < 1$ 是小数部分。
对 $k$ 进行带余除法 $k = nq + r$,其中 $q \in \mathbb{Z}$,$0 \leq r \le n-1$。
由 $k = \lfloor x \rfloor$,左边为:\[\left\lfloor \frac{k}{n} \right\rfloor = q.\]
由于 $0 \leq r \le n-1$ 且 $0 \leq f < 1$,故 $0 \leq r + f < n$,因此:\[\left\lfloor \frac{x}{n} \right\rfloor = q + \left\lfloor \frac{r + f}{n} \right\rfloor = q.\]左边和右边均为 $q$,故等式成立。

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

 Author| hjfmhh Posted 2025-5-2 08:45
Last edited by hbghlyj 2025-5-2 13:30
hbghlyj 发表于 2025-5-2 00:02
设 $x = k + f$,其中 $k = \lfloor x \rfloor$ 是整数部分,$0 \leq f < 1$ 是小数部分。
对 $k$ 进行带余 ...
谢谢。当时我是这样证明的,为什么后面出了点小问题?能改进吗?
设 $\left[\frac{[x]}{n}\right]=m,$ 则 $m \leqslant \frac{[x]}{n}<m+1, m n \leq[x]<m n+n$
若$[x]=m n+k, k \in\{0,1, \cdots, n-1\} \quad k+1 \in\{1, \cdots, n\}$
则 $m n+k \leqslant x<m n+k+1, m+\frac{k}{n} \leqslant \frac{x}{n}<m+\frac{k+1}{n}$
$\therefore\left[m+\frac{k}{n}\right] \leqslant\left[\frac{x}{n}\right] \leqslant\left[m+\frac{k+1}{n}\right]$
$\therefore \quad m \leq\left[\frac{x}{n}\right] \leq m+\left[\frac{k+1}{n}\right] \quad$ 这个值可以是 $m$ 也可以是 $m+1$ ?
如果是m就证好了。
为什么不能是 m+1?

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

 Author| hjfmhh Posted 2025-5-2 16:16
hbghlyj 发表于 2025-5-2 09:44
当 $\frac{k+1}n=1$ 时从 $\frac xn<m+\frac{k+1}n$ 即 $\frac xn<m+1$ 得 $\lfloor\frac xn\rfloor\le m$ ...
哦,我的证法是正确的是吗?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2025-5-2 16:42
hjfmhh 发表于 2025-5-2 08:45
谢谢。当时我是这样证明的,为什么后面出了点小问题?能改进吗?
设 $\left[\frac{[x]}{n}\right]=m,$ 则  ...

\[\left[\frac xn\right]=k\iff k\leqslant\frac xn<k+1\iff0\leqslant x-kn<n,\]

\[\left[\frac{[x]}n\right]=\left[\frac{kn+[x-kn]}n\right]=k+\left[\frac{[x-kn]}n\right]=k.\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2025-5-2 17:00
还可以这样证:利用 `[x+y]\geqslant[x]+[y]`,有
\[x\geqslant[x]=\left[\frac xn+\frac xn+\cdots+\frac xn\right]\geqslant\left[\frac xn\right]+\left[\frac xn\right]+\cdots+\left[\frac xn\right]=n\left[\frac xn\right],\]

\[\frac xn\geqslant\frac{[x]}n\geqslant\left[\frac xn\right],\]
于是
\[\left[\frac xn\right]\geqslant\left[\frac{[x]}n\right]\geqslant\left[\left[\frac xn\right]\right]=\left[\frac xn\right],\]
所以
\[\left[\frac{[x]}n\right]=\left[\frac xn\right].\]

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

 Author| hjfmhh Posted 2025-5-3 09:35
Last edited by hbghlyj 2025-5-3 12:26帮忙证明:$[x]+[x+1/2]=[2x]$,对任意实数$x$成立

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-5-3 12:30
设 $f(x)= \lfloor x\rfloor+\lfloor x+\frac{1}{2}\rfloor-\lfloor 2x \rfloor$

显然可以看出:
$f(x+\frac{1}{2})=f(x)$
$f(x)=0 \quad \forall x \in [0, \frac{1}{2})$

由此立即得出 $f \equiv 0$

附注:通过使用 $f(x)= \lfloor x\rfloor+\lfloor x+\frac{1}{n}\rfloor+ \ldots +\lfloor x+\frac{n-1}{n}\rfloor-\lfloor nx \rfloor$,以同样的方法推导出:
$$\lfloor x\rfloor+\lfloor x+\frac{1}{n}\rfloor+ \ldots +\lfloor x+\frac{n-1}{n}\rfloor=\lfloor nx \rfloor$$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-5-3 16:19
对$x,y\inR$,证明$f(x,y)=g(x,y)$
$$f(x,y)=1-[\{x+0.5\}+\{y+0.5\}]$$
$$g(x,y)=[2x]+[2y]-[x]-[y]-[x+y]$$
记$x=n+r$和$y=m+s$,其中$n,m\in\Bbb Z$和$r,s\in\left[0,1\right),r\ge s$.
则$f(x,y)=f(r,s)$,$g(x,y)=g(r,s)=[2x]+[2y]-[x+y]$.
  • $r,s\in\left[0,0.5\right)$.
    $\{r+0.5\}+\{s+0.5\}=r+s+1\in[1,2)⇒f(r,s)=0$.
    $[2r]=[2s]=[r+s]=0⇒g(r,s)=0$.
  • $r\in[0.5,1),s\in[0,0.5)$.
    $\{r+0.5\}+\{s+0.5\}=r+s\in[0.5,1.5)⇒f(r,s)=1-[r+s]$.
    $[2r]=1,[2s]=0⇒g(r,s)=1-[r+s]$.
  • $r,s\in[0.5,1)$.
    $\{r+0.5\}+\{s+0.5\}=r+s-1⇒f(r,s)=2-[r+s]$.
    $[2r]=[2s]=1⇒g(r,s)=2-[r+s]$.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-5-3 16:19
从$g(x,y)=f(x,y)≥0$得$[2x]+[2y]\ge[x]+[y]+[x+y]$ (华罗庚“数论导引”第1章习题3)
由以上不等式和Legendre's formula可推得
$m!n!(m + n)!{\Large|}(2m)!(2n)!$
对任意正整数$m,n$成立.是这帖MathStackexchange

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

 Author| hjfmhh Posted 2025-5-3 20:20
Last edited by hbghlyj 2025-5-3 20:48
hbghlyj 发表于 2025-5-3 16:19
从$g(x,y)=f(x,y)≥0$得$[2x]+[2y]\ge[x]+[y]+[x+y]$ (华罗庚“数论导引”第1章习题3)
由以上不等式和Legen ...
请问这些成立吗:
  • 对任意实数x,y,{x+y}={{x}+{y}},{x+y}<={x}+{y};
  • [x]*[y]<=[xy];
  • n为正整数,则[nx]>=n[x];
  • 当{x}+{y}<1时,[x+y]=[x]+[y];当{x}+{y}>=1时,[x+y]=[x]+[y]+1

Comment

4.
\([x + y] = [x] + [y] + [\{x\} + \{y\}]\)。
当 \(\{x\} + \{y\} \geq 1\) 时$[\{x\} + \{y\}]=1$, $[x+y]=[x]+[y]+1$.  Posted 2025-5-3 21:01

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-5-3 20:39
x + y = [x] + [y] + {x} + {y}  
由于[x] + [y]是整数
{x + y} = {{x} + {y}} ≤ {x} + {y}

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-5-3 20:43
判断不等式 [x]·[y] ≤ [xy] 是否成立这道题目
取 x = -1.2,y = -1.2,则:
- 左边:[x]·[y] = (-2)×(-2) = 4
- 右边:[xy] = [(-1.2)×(-1.2)] = [1.44] = 1
此时 4 ≤ 1 不成立,说明原不等式不一定成立。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-5-3 20:55
对于任何实数 \( x \) 和正整数 \( n \),
\[nx\ge n[x]\]
对两边取$[\,]$得到\([nx] \geq n[x]\)

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

 Author| hjfmhh Posted 2025-5-3 20:53
Last edited by hjfmhh 2025-5-3 21:32
hbghlyj 发表于 2025-5-3 20:39
x + y = [x] + [y] + {x} + {y}  
由于[x] + [y]是整数
{x + y} = {{x} + {y}} ≤ {x} + {y}
这样证明是不是更具体点:x + y = [x] + [y] + {x} + {y}  即[x+y]+{x+y}=[x] + [y] + {x} + {y},
当{x+y}<1时,此时[x+y]=[x] + [y],{x + y} ={x} + {y}= {{x} + {y}} ;即{x + y}={{x} + {y}}
当2>{x+y}>=1时,此时[x+y]=[x] + [y]+1,{x + y} +1={x} + {y}=[{x} + {y}]+ {{x} + {y}}=1+{{x} + {y}},即{x + y}={{x} + {y}},综上,{x + y}={{x} + {y}}。

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

 Author| hjfmhh Posted 2025-5-3 21:09
hbghlyj 发表于 2025-5-3 20:55
x + y = [x] + [y] + {x} + {y}
所以 x + y 和 {x} + {y} 两个数相差一个整数,所以它们有相同的 {}
得到{x ...
{{x} + {y}} ≤ {x} + {y},这里是因为{x} + {y}>1显然成立,当0<={x} + {y}<1时,{{x} + {y}} = {x} + {y}

Mobile version|Discuz Math Forum

2025-5-31 10:48 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit