Forgot password
 Register account
View 2400|Reply 0

[不等式] 昨晚人教群里一道简单二元含参不等式求参数最小

[Copy link]

681

Threads

110K

Posts

206

Reputation

Show all posts

kuing posted 2013-10-4 12:43 |Read mode
爱好者—V神(9802*****)  23:06:03
QQ图片20131004123923.jpg
当 $a=b$ 时 $\lambda$ 能取 $\Bbb R$;当 $a\ne b$ 时,分离参数等价于
\[\lambda \geqslant \frac{a+b-2\sqrt{ab}}{\sqrt{\frac{a^2+b^2}2}-\sqrt{ab}},\]
分子分母同时有理化,等价于
\[\lambda \geqslant \frac{\sqrt{2(a^2+b^2)}+2\sqrt{ab}}{a+b+2\sqrt{ab}},\]
注意到
\[\frac{\sqrt{2(a^2+b^2)}+2\sqrt{ab}}{a+b+2\sqrt{ab}}<\frac{\sqrt2(a+b)+2\sqrt{ab}}{a+b+2\sqrt{ab}}<\sqrt2,\]
又当 $b\not\to0$ 时
\[\lim _{a\to 0}\frac{\sqrt{2(a^2+b^2)}+2\sqrt{ab}}{a+b+2\sqrt{ab}}=\sqrt2,\]
故 $\lambda$ 的最小值为 $\sqrt2$。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 17:16 GMT+8

Powered by Discuz!

Processed in 0.027101 second(s), 28 queries

× Quick Reply To Top Edit