Forgot password
 Register account
View 2287|Reply 11

[函数] 两个函数的图象有一个公共点,并在该点处的切线相同

[Copy link]

186

Threads

206

Posts

0

Reputation

Show all posts

guanmo1 posted 2016-2-28 15:31 |Read mode
Last edited by hbghlyj 2025-3-21 04:46若两个函数的图象有一个公共点,并在该点处的切线相同,就说明这两个函数有 why 点,已知函数 $f(x)=\ln x$ 和 $g(x)=\mathrm{e}^{x+m}$ 有 why 点,则 $m$ 所在的区间为( )

A.$(-3,-\mathrm{e})$
B.$\left(-\mathrm{e},-\frac{21}{8}\right)$
C.$\left(-\frac{21}{8},-\frac{13}{6}\right)$
D.$\left(-\frac{13}{6},-2\right)$

2

Threads

14

Posts

0

Reputation

Show all posts

weigang99888 posted 2016-2-28 17:13
应该选C

186

Threads

206

Posts

0

Reputation

Show all posts

original poster guanmo1 posted 2016-2-28 17:45
回复 2# weigang99888


    为什么呢

186

Threads

206

Posts

0

Reputation

Show all posts

original poster guanmo1 posted 2016-2-29 11:12
回复 2# weigang99888


    要当作解答题做哦

48

Threads

77

Posts

0

Reputation

Show all posts

longzaifei posted 2016-2-29 15:05
设切点为$ (x,y) $,则有 $\begin{cases} y=\ln{x} \\  y=e^{x+m}  \\
\dfrac{1}{x}=e^{x+m} \end{cases}$ 得$x\ln{x}=1$,$x$有确定的值,估算得在区间$x\in(\dfrac{3}{2},2)$,由$\dfrac{1}{x}=e^{x+m}$得$m=-x-\ln{x}=-x-\dfrac{1}{x}$,得$m\in(-\dfrac{5}{2},-\dfrac{13}{6}) \subset(-\dfrac{21}{8},-\dfrac{13}{6}) $所以选 $C$

2

Threads

14

Posts

0

Reputation

Show all posts

weigang99888 posted 2016-2-29 15:33
大题要验证$y=x\ln x$在$(1,+infty)$单调递增

2

Threads

14

Posts

0

Reputation

Show all posts

weigang99888 posted 2016-2-29 15:35

RE: why点

大题要验证$y=x\ln x$在$(1,+infty)$单调递增,同时要估算$\dfrac{3}{2}^{\dfrac{3}{2}}<e$

7

Threads

578

Posts

9

Reputation

Show all posts

游客 posted 2016-3-1 08:51
不知道出题目的是怎么弄出的21/8这个数据。

186

Threads

206

Posts

0

Reputation

Show all posts

original poster guanmo1 posted 2016-3-1 21:42
回复 8# 游客


    同样的疑问。

186

Threads

206

Posts

0

Reputation

Show all posts

original poster guanmo1 posted 2016-3-3 00:08
急寻黑龙江哈三中的老师解惑。

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2016-3-4 22:44
回复 10# guanmo1

算了吧,命题者不会看到这里
这名字我喜欢

186

Threads

206

Posts

0

Reputation

Show all posts

original poster guanmo1 posted 2016-3-5 13:24
回复 11# 色k
看来这题真不好搞啊,到现在没有高手来解答。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:29 GMT+8

Powered by Discuz!

Processed in 0.017316 seconds, 44 queries