|
Author |
isee
Posted 2017-6-10 14:58
Last edited by isee 2017-6-10 15:09(以抛物线焦点为极点,平行于抛物线主轴向右)建立如图极坐标系$Ox$,则由抛物线定义,$$\frac {\rho}{\rho \cos \theta +2}=1.$$
化简即是此抛物线在极坐标系中的方程$$\rho=\frac 2{1-\cos \theta}.$$
如图,记$A(\rho_1,\theta)$,则$B(\rho_2,\theta+ \mathrm{\pi})$,$C(\rho_3,\theta-\frac {\mathrm{\pi}}2)$,$D(\rho_4,\theta+\frac {\mathrm{\pi}}2)$.
于是\begin{align*}\abs{AB}+\abs{CD}
&=\rho_1+\rho_2+\rho_3+\rho_4\\
&=\frac 2{1-\cos \theta}+\frac 2{1+\cos \theta}+\frac 2{1-\sin \theta}+\frac 2{1+\sin \theta}\\
&=\frac 4{1-\cos^2 \theta}+\frac 4{1-\sin^2 \theta}\\
&=\frac 4{\sin^2 \theta}+\frac 4{\cos^2 \theta}\\
&\geqslant \frac {(2+2)^2}{\sin^2\theta+\cos ^2\theta}\\
&=16
\end{align*}
取等时号,$\theta=\frac {\mathrm{\pi}}4$. |
|