|
kuing
Posted 2017-8-8 14:27
用下“作差有理化放缩法”好了。
因为 $x\leqslant2$,所以
\[\sqrt{x^2+3}-\frac{x+3}2=\frac{\frac34(x-1)^2}{\sqrt{x^2+3}+\frac{x+3}2}\geqslant \frac{\frac34(x-1)^2}{\sqrt7+\frac{2+3}2}\geqslant \frac{\frac34(x-1)^2}{3+\frac{2+3}2}=\frac3{22}(x-1)^2,\]
对 $y$ 同理,所以有
\begin{align*}
\sqrt{x^2+3}&\geqslant \frac{x+3}2+\frac3{22}(x-1)^2, \\
\sqrt{y^2+3}&\geqslant \frac{y+3}2+\frac3{22}(y-1)^2,
\end{align*}
因此
\[\LHS\geqslant \frac{x+y+6}2+\frac3{22}(x-1)^2+\frac3{22}(y-1)^2+\sqrt{xy+3}
=4+\frac3{11}(1-xy)+\sqrt{xy+3},\]
故只需证
\[\frac3{11}(1-xy)+\sqrt{xy+3}\geqslant 2,\]
由 $xy\leqslant 1$ 得
\[xy+3-\left( 2-\frac3{11}(1-xy) \right)^2=\frac1{121}(1-xy)(9xy+2)\geqslant 0,\]
即得证。 |
|