Forgot password
 Register account
View 1851|Reply 1

[不等式] 二元不等式

[Copy link]

72

Threads

96

Posts

0

Reputation

Show all posts

v6mm131 posted 2017-8-8 13:40 |Read mode
已知$x,y\ge 0$且满足$x+y=2$,证明:\[\sqrt{x^2+3}+\sqrt{y^2+3}+\sqrt{xy+3}\ge 6\]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2017-8-8 14:27
用下“作差有理化放缩法”好了。

因为 $x\leqslant2$,所以
\[\sqrt{x^2+3}-\frac{x+3}2=\frac{\frac34(x-1)^2}{\sqrt{x^2+3}+\frac{x+3}2}\geqslant \frac{\frac34(x-1)^2}{\sqrt7+\frac{2+3}2}\geqslant \frac{\frac34(x-1)^2}{3+\frac{2+3}2}=\frac3{22}(x-1)^2,\]
对 $y$ 同理,所以有
\begin{align*}
\sqrt{x^2+3}&\geqslant \frac{x+3}2+\frac3{22}(x-1)^2, \\
\sqrt{y^2+3}&\geqslant \frac{y+3}2+\frac3{22}(y-1)^2,
\end{align*}
因此
\[\LHS\geqslant \frac{x+y+6}2+\frac3{22}(x-1)^2+\frac3{22}(y-1)^2+\sqrt{xy+3}
=4+\frac3{11}(1-xy)+\sqrt{xy+3},\]
故只需证
\[\frac3{11}(1-xy)+\sqrt{xy+3}\geqslant 2,\]
由 $xy\leqslant 1$ 得
\[xy+3-\left( 2-\frac3{11}(1-xy) \right)^2=\frac1{121}(1-xy)(9xy+2)\geqslant 0,\]
即得证。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:18 GMT+8

Powered by Discuz!

Processed in 0.015444 seconds, 43 queries