Forgot password?
 Register account
View 1906|Reply 4

[几何] 求双曲线的离心率

[Copy link]

7

Threads

8

Posts

81

Credits

Credits
81

Show all posts

yhrenwoxing Posted 2018-1-3 22:50 |Read mode
Last edited by hbghlyj 2025-5-4 10:32已知双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右顶点为A,右焦点为F,B为双曲线在第二象限上的一点,B关于坐标原点O的对称点为C,直线CA与直线BF的交点M恰好为线段BF的中点,则双曲线的离心率为(3)

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-1-3 23:06
Last edited by hbghlyj 2025-5-4 10:32这显然是纯平几题,跟双曲线没半毛钱关系,顶多半分钱。
QQ截图20180103230840.png
由梅氏定理有
\[\frac {FA}{AO}\cdot \frac {OC}{CB}\cdot \frac {BM}{MF}=1,\]
得到 $FA=2AO$,即 $c=3a$。

7

Threads

8

Posts

81

Credits

Credits
81

Show all posts

 Author| yhrenwoxing Posted 2018-1-3 23:32
谢谢大神
OM//CF  AF=2OA

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-1-3 23:39
回复 3# yhrenwoxing

也行
不过我觉得还是用梅氏定理更见本质,因为将“M恰为BF中点”改为“$\vv{BM}=\lambda\vv{MF}$”依然适用。

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2018-1-4 08:04
点A是三角形BCF的重心。。。。

Mobile version|Discuz Math Forum

2025-5-31 10:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit