Forgot password?
 Create new account
View 1796|Reply 4

[不等式] 来自讨论组的二元小不等式 `\sqrt{a^2-ab+b^2}>(a^ab^b)^{1/(a+b)}`

[Copy link]

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2019-11-9 22:09:19 |Read mode
v6 21:26:14
QQ图片20191109220605.jpg
kk这玩意怎么证明?
由加权均值不等式有
\[
\LHS^2=\frac{a^3+b^3}{a+b}
=\frac a{a+b}a^2+\frac b{a+b}b^2
\geqslant(a^2)^{a/(a+b)}(b^2)^{b/(a+b)}
=\RHS^2.
\]

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2019-11-14 21:00:56
感觉和这题:已知$a,b,c>0,abc=1$,则$\Sigma \frac{a^a+b^b}{1+c}\geqslant 3$
有点亲戚关系。

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

 Author| kuing Posted at 2019-11-14 21:25:10
回复 2# 力工

没关系,这个幂指纯粹吓人,只要利用 `x^x\geqslant x` 轻轻一放缩就好了。

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2019-11-16 09:55:33
回复 3# kuing
orz,厉害我郭哥!一眼看破,我用了两个函数不等式才转化。$xlnx\geqslant x-1,e^x\geqslant1+x+0.5x^2$。累啊

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

 Author| kuing Posted at 2019-11-16 14:26:30
感觉和这题:已知$a,b,c>0,abc=1$,则$\Sigma \frac{a^a+b^b}{1+c}\geqslant 3$
有点亲戚关系。 ...
力工 发表于 2019-11-14 21:00
还是写个过程:易证 `x^x\geqslant x`,由条件有 `a+b+c\geqslant3`,所以
\begin{align*}
\sum\frac{a^a+b^b}{1+c}&\geqslant\sum\frac{a+b}{1+c}\\
&\geqslant\sum\frac{a+b}{\frac{a+b+c}3+c}\\
&=3\sum\left( 1-\frac{4c}{a+b+4c} \right)\\
&\geqslant3\sum\left( 1-\left( \frac1{a+c}+\frac1{b+c}+\frac1{2c} \right)\frac{4c}9 \right)\\
&=3.
\end{align*}

手机版Mobile version|Leisure Math Forum

2025-4-21 19:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list