Forgot password?
 Register account
View 1642|Reply 1

[几何] 椭圆里的两线段积是否为定值

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-11-27 14:45 |Read mode
已知椭圆$C:\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\ (a>b>0)$的离心率为$\frac{1}{2}$,直线$l:y=-\frac{1}{2}x+2$与椭圆$C$有且仅有一个公共点$A$.
(1)求椭圆$C$的方程及$A$点坐标;
(2)设直线$l$与$x$轴交于点$B$.过点$B$的直线与$C$交于$E$,$F$两点,记$A$在$x$轴上的投影为$G$,$T$为$BG$的中点,直线$AE$,$AF$与$x$轴分别交于$M$,$N$两点.
试探究$|TM|\cdot |TN|$是否为定值?若为定值,求出此定值,否则,请说明理由.

容易知道$A(1,3/2)$,$G(1,0)$,$B(4,0)$,$T(5/2,0)$,依题可知,$MN$被$G,B$调和分割,在调和点列性质,立即有$TM\cdot TN=TG^2=9/4$。

放这里提醒尝试只设点是否可解析出结果。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2020-11-27 18:32
Last edited by isee 2020-11-27 19:07直接设点,不用韦达定理,还真不知道怎么消元为好,经不住韦过定理两根和与两根积的诱导,算了两个小时(计算弱爆了),主要过程如下:


设$E(x_1,y_1),F(x_2,y_2)$,则由直线$AE$,$AF$的方程可以得到$$y_M=\frac{y_1-\frac 32x_1}{y_1-\frac 32},y_N=\frac{y_2-\frac 32x_2}{y_2-\frac 32}.$$

设过点$B$的直线$EF$的方程为$$x=my+4,$$与椭圆联立,消$x$有$$(3m^2+4)y^2+24my+36=0\\\Rightarrow y_1+y_2=\frac{-24m}{3m^2+4},\\y_1y_2=\frac{36}{3m^2+4}.$$

于是$$|TM|\cdot |TN|=\left(\frac 52-y_M\right)\left(\frac 52-y_N\right)=\frac {25}4-\frac{8y_1y_2-\frac 92(x_1y_2+x_2y_1)-\frac {15}2(y_1+y_2)+\frac {45}4(x_1+x_2)-\frac 92x_1x_2}{2y_1y_2-3(y_1+y_2)+\frac 92}.$$

再次消去$x_1,x_2$,将$$x_1y_2+x_2y_1=2my_1y_2+4(y_1+y_2),\\x_1+x_2=m(y_1+y_2)+8,\\x_1x_2=(my_1+4)((my_2+4)=m^2y_1y_2+4m(y_1+y_2)+16,$$代入上式,化简整理为

$$|TM|\cdot |TN|=\frac {25}4-\frac {\left(8-9m-\frac{9m^2}2\right)y_1y_2+\left(-\frac {27m}4-\frac {51}2\right)(y_1+y_2)+18}{2y_1y_2-3(y_1+y_2)+\frac 92},$$

代入$y_1+y_2,y_1y_2$化为$m$式子

$$|TM|\cdot |TN|=\frac {25}4-\frac {54m^2+288m+360}{\frac{27}2m^2+72m+90}=\frac {25}4-4=\frac 94.$$

即乘积为定值.

PS:没任何技术含量,慢慢硬算到底.

Mobile version|Discuz Math Forum

2025-5-31 11:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit