Forgot password?
 Register account
View 1818|Reply 3

[几何] 椭圆内定点弦四边形面积最大值

[Copy link]

5

Threads

6

Posts

65

Credits

Credits
65

Show all posts

dvkxgl Posted 2020-11-29 16:55 |Read mode
Last edited by dvkxgl 2020-11-29 17:03过椭圆$E:x^2/a^2+y^2/b^2=1(a>b>0)$内的一个定点$P(x_0,y_0)$作两条相交弦$AC,BD$.求四边形$ABCD$面积最大值? 可以求吗?如果不可以,再添一个条件设$AC,BD$夹角为定值$\theta$,又是否可求? 感觉好复杂.

5

Threads

6

Posts

65

Credits

Credits
65

Show all posts

 Author| dvkxgl Posted 2020-11-29 16:58
设$k_1,k_2$分别为$AC,BD$斜率,四边形面积表达式为
\[S=2{{a}^{2}}{{b}^{2}}|k_1-k_2|\frac{\sqrt{{{a}^{2}}k_{1}^{2}+{{b}^{2}}-m_{1}^{2}}\sqrt{{{a}^{2}}k_{2}^{2}+{{b}^{2}}-m_{2}^{2}}}{({{a}^{2}}k_{1}^{2}+{{b}^{2}})({{a}^{2}}k_{2}^{2}+{{b}^{2}})},\]
其中\[{{m}_{1}}={{y}_{0}}-{{k}_{1}}{{x}_{0}},\;\;\;{{m}_{2}}={{y}_{0}}-{{k}_{2}}{{x}_{0}}.\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-11-29 17:37
不限夹角应该不难弄,限定夹角反而难……

不限夹角时,可以先解决圆的情况,再作伸缩变换就是椭圆的了,但限定夹角的话就没法伸缩了……

当然这只是第一感觉,具体……晚上看有没有闲情再撸撸看吧……

50

Threads

402

Posts

2881

Credits

Credits
2881
QQ

Show all posts

zhcosin Posted 2020-11-30 21:20
没有夹角的情况下,把椭圆看成圆的投影,分分钟解决,限定了夹角的话。。。投影不好使了

Mobile version|Discuz Math Forum

2025-5-31 11:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit