已知椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1(a>b>0),Q(\frac{a^2}{m},0)(m\ne|a|且m\ne0)$,过点$P(a,t)$($t$为不为0的常数)的动直线交椭圆于$A,B$两点,直线$AQ,BQ$分别交椭圆于另一点$C,D$,则直线$AB,CD$的斜率满足$k_{CD}+\dfrac{a-m}{a+m}\cdot k_{AB}=\dfrac{2mt}{m^2-a^2}$.
(1)这个结论如何证明?
(2)更一般的,若将点$Q(\frac{a^2}{m},0)$改为$Q(m,n)$,$P(a,t)$改为$P(s,t)$,则直线$AB,CD$的斜率之间存在何种关系式? |