Forgot password?
 Register account
View 529|Reply 2

[几何] 椭圆与圆的题目

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2021-7-1 01:20 |Read mode
70101.jpg

问题:设椭圆$C:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$的右焦点为$F(c,0)$,如果将圆$x^2+y^2=b^2$变为椭圆$\dfrac{x^2}{a_1^2}+\dfrac{y^2}{b^2}=1(其中a_1<c)$,$M,N$是椭圆$C$上的两点,直线$MN$与椭圆$\dfrac{x^2}{a_1^2}+\dfrac{y^2}{b^2}=1$相切,那么$M,N,F$三点共线与$|MN|$的长度有关系么?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-7-1 02:05
只撸原题且只证必要性,用极坐标玩玩:
QQ截图20210701020139.png
这里以右焦点为极点,那么椭圆方程为
\[\rho=\frac{ep}{1+e\cos\theta}=\frac{b^2}{a+c\cos\theta},\]当 `MN` 过 `F` 时,如上图,由与 `x^2+y^2=b^2` 相切得 `c\cos\theta=FQ=\sqrt{c^2-b^2}`,故
\[FM=\frac{b^2}{a+\sqrt{c^2-b^2}}=\frac{a-\sqrt{c^2-b^2}}2=\frac{a-FQ}2,\]而另一边 `FN` 就是分母的 + 变成 - 即
\[FN=\frac{b^2}{a-\sqrt{c^2-b^2}}=\frac{a+\sqrt{c^2-b^2}}2=\frac{a+FQ}2,\]所以 `MN=a`,顺便得出 `FM=QN`。

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2021-7-1 09:15
回复 2# kuing
好方法!
反过来,当MN=a时,如何用极坐标法证明三点共线

Mobile version|Discuz Math Forum

2025-5-31 10:53 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit