Forgot password
 Register account
View 394|Reply 2

[数列] 2022年高考浙江卷第10题 数列估值 $100a_{100}$

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2022-6-13 17:45 |Read mode
Last edited by isee 2022-6-14 14:08浙江卷特色题定格在2022年6月了

=========


已知数列$\left\{ a_n \right\}$满足$a_1=1,a_{n+1}=a_n-\frac 13a_n^2\left( n\in {{\mathbf{N}}^{*}} \right)$,则(    )

B. $\frac 52<100a_{100}<3$
061322-zj-10.jpg
isee=freeMaths@知乎

1

Threads

17

Posts

10

Reputation

Show all posts

AzraeL posted 2022-6-13 18:09
和去年完全一样的题型,但这个题目没有去年的难.
首先不难得到\[
0<a_{n+1}<a_n\leqslant1.\]
一方面有\[
\dfrac1{a_{n+1}}=\dfrac1{a_n}+\dfrac1{3-a_n}>\dfrac1{a_n}+\dfrac13\implies a_n\leqslant\dfrac3{n+2}(n\in{\bf N}^\ast).\]
另一方面有\[
\dfrac1{a_{n+1}}=\dfrac1{a_n}+\dfrac1{3-a_n}\leqslant\dfrac1{a_n}+\dfrac{n+2}{3n+3}\leqslant\dfrac1{a_1}+\sum_{k=1}^n\dfrac{k+2}{3k+3}=1+\dfrac n3+\sum_{k=1}^n\dfrac1{3k+3}(n\in{\bf N}^\ast).\]
于是\[
\dfrac1{a_{n+1}}<1+\dfrac n3+\int_0^n\dfrac{{\rm d}x}{3x+3}\leqslant1+\dfrac n3+\dfrac13\sqrt{\int_0^n{\rm d}x\int_0^n\dfrac{{\rm d}x}{(x+1)^2}}=1+\dfrac n3+\dfrac n{3\sqrt{1+n}}.\]
即\[
a_n\geqslant\dfrac{3}{n+2+\sqrt n-\frac1{\sqrt n}}(n\in{\bf N}^\ast).\]
综上所述,有\[
\dfrac{3}{n+2+\sqrt n-\frac1{\sqrt n}}\leqslant a_n\leqslant\dfrac3{n+2}(n\in{\bf N}^\ast).\]
因此$\dfrac52<\dfrac{1000}{373}<100a_{100}<\dfrac{150}{51}<3$.
另外对$a_n$有$a_n=\dfrac3n-\dfrac{3\ln n}{n^2}+o\left(\dfrac{\ln n}{n^2}\right)(n\to\infty)$.

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1 赞先! 后学习

View Rating Log

126

Threads

430

Posts

1

Reputation

Show all posts

TSC999 posted 2022-6-16 23:52
求 a100 的范围.png

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:51 GMT+8

Powered by Discuz!

Processed in 0.024051 seconds, 51 queries