|
和去年完全一样的题型,但这个题目没有去年的难.
首先不难得到\[
0<a_{n+1}<a_n\leqslant1.\]
一方面有\[
\dfrac1{a_{n+1}}=\dfrac1{a_n}+\dfrac1{3-a_n}>\dfrac1{a_n}+\dfrac13\implies a_n\leqslant\dfrac3{n+2}(n\in{\bf N}^\ast).\]
另一方面有\[
\dfrac1{a_{n+1}}=\dfrac1{a_n}+\dfrac1{3-a_n}\leqslant\dfrac1{a_n}+\dfrac{n+2}{3n+3}\leqslant\dfrac1{a_1}+\sum_{k=1}^n\dfrac{k+2}{3k+3}=1+\dfrac n3+\sum_{k=1}^n\dfrac1{3k+3}(n\in{\bf N}^\ast).\]
于是\[
\dfrac1{a_{n+1}}<1+\dfrac n3+\int_0^n\dfrac{{\rm d}x}{3x+3}\leqslant1+\dfrac n3+\dfrac13\sqrt{\int_0^n{\rm d}x\int_0^n\dfrac{{\rm d}x}{(x+1)^2}}=1+\dfrac n3+\dfrac n{3\sqrt{1+n}}.\]
即\[
a_n\geqslant\dfrac{3}{n+2+\sqrt n-\frac1{\sqrt n}}(n\in{\bf N}^\ast).\]
综上所述,有\[
\dfrac{3}{n+2+\sqrt n-\frac1{\sqrt n}}\leqslant a_n\leqslant\dfrac3{n+2}(n\in{\bf N}^\ast).\]
因此$\dfrac52<\dfrac{1000}{373}<100a_{100}<\dfrac{150}{51}<3$.
另外对$a_n$有$a_n=\dfrac3n-\dfrac{3\ln n}{n^2}+o\left(\dfrac{\ln n}{n^2}\right)(n\to\infty)$. |
Rate
-
View Rating Log
|