Forgot password?
 Create new account
View 238|Reply 2

[不等式] 寻找四元不等式的出处及证明

[Copy link]

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

lemondian Posted at 2023-1-10 08:46:55 |Read mode
Last edited by kuing at 2023-12-30 23:51:00求最小的实数$k$,使得对于任意的$a,b,c,d\inR$,有$\sqrt{(a^2+1)(b^2+1)(c^2+1)}+\sqrt{(b^2+1)(c^2+1)(d^2+1)}+\sqrt{(c^2+1)(d^2+1)(a^2+1)}$ $+\sqrt{(d^2+1)(a^2+1)(b^2+1)}\geqslant 2(ab+bc+cd+da+ac+bd)-k$。
听说这是伊朗的竞赛题,请问哪位知道是哪一年的呢?

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2023-1-10 15:54:42
出处不知道,但证明很容易。

还是用当年 kuing.cjhb.site/forum.php?mod=viewthread&tid=3449 这招:注意到恒等式
\[(1+a^2)(1+b^2)(1+c^2)=(ab+bc+ca-1)^2+(a+b+c-abc)^2,\]

\[\sqrt{(1+a^2)(1+b^2)(1+c^2)}\geqslant ab+bc+ca-1,\]
同理有另外三式,相加即得
\[\LHS\geqslant2(ab+bc+cd+da+ac+bd)-4,\]
最后再看看能否取等,显然当 `a=b=c=d=\sqrt3` 时取等,那么 `k` 的最小值就是 `4` 了。

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

 Author| lemondian Posted at 2023-1-11 09:11:50
kuing 发表于 2023-1-10 15:54
出处不知道,但证明很容易。

还是用当年 https://kuing.cjhb.site/forum.php?mod=viewthread&tid ...
柯西也可以证的呢

手机版Mobile version|Leisure Math Forum

2025-4-21 14:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list