Forgot password
 Register account
View 2108|Reply 4

[不等式] 关于e与根号3的大小估计

[Copy link]

92

Threads

89

Posts

0

Reputation

Show all posts

aishuxue posted 2018-5-7 22:37 |Read mode
Last edited by hbghlyj 2025-3-21 23:53求证: $\mathrm{e}^{\frac{\sqrt{3}+1}{2}}>\sqrt{3}+2$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-5-7 23:48
暴力解决呗,利用 e^x>1+x+x^2/2+x^3/6+x^4/24

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2018-5-8 16:20
回复 1# aishuxue

这真的是原题?

7

Threads

578

Posts

9

Reputation

Show all posts

游客 posted 2018-5-11 09:13
原题可能提供了参考数据。

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2018-5-12 02:32
回复 1# aishuxue


在别的地方展开也行
$\frac{\sqrt{3}+1}{2}\approx\frac{1.732+1}{2}=1.366$,为了计算上的方便,可以取一个靠近的值,比如$\ln(3)\approx 1.099$

于是有
\[e^x=e^{\ln(3)}+e^{\ln(3)}(x-\ln(3))+...\]
\[e^x>3+3(x-\ln(3))\]
\[e^{\frac{\sqrt{3}+1}{2}}>3+3(\frac{\sqrt{3}+1}{2}-\ln(3))\]
\[\approx 3+3(1.366-1.099)=3.801>3.732\approx\sqrt{3}+2\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:43 GMT+8

Powered by Discuz!

Processed in 0.020567 seconds, 44 queries