Forgot password?
 Register account
View 2098|Reply 4

[不等式] 关于e与根号3的大小估计

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2018-5-7 22:37 |Read mode
Last edited by hbghlyj 2025-3-21 23:53求证: $\mathrm{e}^{\frac{\sqrt{3}+1}{2}}>\sqrt{3}+2$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-5-7 23:48
暴力解决呗,利用 e^x>1+x+x^2/2+x^3/6+x^4/24

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2018-5-8 16:20
回复 1# aishuxue

这真的是原题?

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2018-5-11 09:13
原题可能提供了参考数据。

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2018-5-12 02:32
回复 1# aishuxue


在别的地方展开也行
$\frac{\sqrt{3}+1}{2}\approx\frac{1.732+1}{2}=1.366$,为了计算上的方便,可以取一个靠近的值,比如$\ln(3)\approx 1.099$

于是有
\[e^x=e^{\ln(3)}+e^{\ln(3)}(x-\ln(3))+...\]
\[e^x>3+3(x-\ln(3))\]
\[e^{\frac{\sqrt{3}+1}{2}}>3+3(\frac{\sqrt{3}+1}{2}-\ln(3))\]
\[\approx 3+3(1.366-1.099)=3.801>3.732\approx\sqrt{3}+2\]

Mobile version|Discuz Math Forum

2025-5-31 10:57 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit