Forgot password?
 Register account
View 1897|Reply 6

[几何] 2018年浙江卷第17题 椭圆 新高考

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2018-6-8 15:12 |Read mode
Last edited by hbghlyj 2025-5-3 22:01初看可以将B的    坐标与m建立函数关系,不过,如何求最值,还不知。

横,消错元了,再试试。——茫然了,怎么搞出个无穷大,,,

已知点$P(0,1)$,椭圆$\frac{x^2}4 + y^2 = m (m > 1)$上两点$A$,$B$满足$\vv{AP}=2\vv{PB}$,则当$m=$___________时,点$B$横坐标的绝对值最大.

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2018-6-8 15:48
计算水平真差劲啊,算出来了,$m=5$.

设$A(x_1,y_1),B(p,q)$,由$\vv{AP}=2\vv{PB}$可得$$x_1=-2p,y_1=-2q+3.$$

于是$$p^2+4q^2=4m,$$
$$4p^2+4(2q-3)^2=4m,$$

两式联立消$m$,整理$$p^2=-4(q-2)^2+4\leqslant 4.$$

满足题设,则$p^2=4,q=2$,代回,$$4+16=4m\Rightarrow m=5.$$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-6-8 16:02
Last edited by hbghlyj 2025-5-3 22:06怎么不玩伸缩?

显然沿 `y` 轴方向伸缩不改变结论,所以作变换 `y\to2y`,此时 `P` 变成 `(0,2)`,椭圆变为圆 `x^2+y^2=4m`,如图:

作 `OH\perp AB` 于 `H`,由于 `PA=2PB` 且 `H` 是 `AB` 中点,可得 `PB=2PH`,所以 `|x_B|` 最大等价于 `|x_H|` 最大。

显然 `H` 的轨迹是圆,所以当 `H(\pm1,1)` 时取最大,此时 `PB=2\sqrt2`,设圆的半径为 `R`,由相交弦定理,有 `(R-2)(R+2)=PB\cdot PA=16`,解得 `R^2=20`,即 `4m=20`,`m=5`。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2018-6-8 16:04
回复 3# kuing


跟计算较劲呢。

话说今年没人集中放图片版的试卷呢,,,,

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2018-6-8 22:01
怎么不玩伸缩?

显然沿 `y` 轴方向伸缩不改变结论,所以作变换 `y\to2y`,此时 `P` 变成 `(0,2)`,椭圆变 ...
kuing 发表于 2018-6-8 16:02
这个过程对几何要求高,不静心看的会看不明白。。。

不过,解法很好,基本不算。。。

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2018-6-9 01:52
Last edited by hbghlyj 2025-5-3 22:03回复 3# kuing

过圆内定点的弦其中点轨迹为为圆,同样过椭圆内定点的弦其中点轨迹为椭圆且两椭圆离心率相等(未证明)则$ AB $中点$ M $的横坐标取得最大值时其坐标值为$ (\pm1,\dfrac{1}{2}) $,$ B $点坐标为$ (2,2) $有\[ m=\dfrac{x^2}{4}+y^2=1+4=5 \]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-6-9 02:13
回复 6# 乌贼

是的,可以直接求 B 的坐标,3#也一样,就不需要用相交弦定理了,而我是故意用了

Mobile version|Discuz Math Forum

2025-5-31 10:46 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit