Forgot password
 Register account
View 2196|Reply 6

[几何] 2018年全国卷2理科第12题 求椭圆离心率

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2018-6-8 16:14 |Read mode
Last edited by hbghlyj 2025-5-3 21:27已知$F_1$ ,$F_2$ 是椭圆$C:\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\;(a > b > 0)$ 的左,右焦点,$A$是$C$的左顶点,点$P$在过$A$且斜率
为$\frac{\sqrt 3}6$ 的直线上,$\triangle PF_1F_2$ 为等腰三角形,$\angle F_1F_2P = 120^{\circ}$ ,则$C$的离心率为

50

Threads

402

Posts

5

Reputation

Show all posts

zhcosin posted 2018-6-8 17:29
Last edited by zhcosin 2018-6-8 22:36等腰三角形只有顶角可以是钝角,所以 $F_1 F_2 = F_2 P = 2
  c$.并且 $\angle P F_1 F_2 = 30^{\circ}$,过点 $P$ 作直线 $F_1 F_2$
  的垂线,垂足为 $Q$,则 $P Q = P F_2 \sin \angle F_1 F_2 P =
  \sqrt{3} c$,而 $F_2 Q = P F_2 \cos \angle P F_2 Q = c$,在直角 $
  \triangle P A Q$中.有
  \[ \frac{\sqrt{3}}{6} = \tan \angle P A Q = \frac{P Q}{A Q} = \frac{P Q}{A
     F_1 + F_1 F_2 + F_2 Q} = \frac{\sqrt{3} c}{(a - c) + 2 c + c} =
     \frac{\sqrt{3} c}{a + 2 c} \]
  于是 $a = 4 c$,即 $e = \frac{1}{4}$.
数学暗恋者,程序员,喜欢古典文学/历史,个人主页: https://zhcosin.coding.me/

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2018-6-8 17:33
回复 2# zhcosin


你把图片搞得如主楼一样小,真是狠。。。看得眼睛发漂。。

50

Threads

402

Posts

5

Reputation

Show all posts

zhcosin posted 2018-6-8 17:38
回复 3# isee
不是图片小,是字小。。。。

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2018-6-8 21:37
211.png
\[ F_2H=c,PH=\sqrt{3}c\\AH=\dfrac{6PH}{\sqrt{3}}=6c\\a=AO=4c\\e=\dfrac{1}{4}\]

7

Threads

578

Posts

9

Reputation

Show all posts

游客 posted 2018-6-11 15:21
试卷里浪费了一个题的位置,这个到底在考什么?

12

Threads

54

Posts

0

Reputation

Show all posts

shidilin posted 2018-6-11 19:54
回复 6# 游客
可以参考网上的段子:
试题难度:往年,衡水;今年、很水

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:01 GMT+8

Powered by Discuz!

Processed in 0.020336 seconds, 47 queries