Forgot password?
 Register account
View 728|Reply 2

[几何] 2021年全国卷乙第11题 椭圆离心率

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-6-11 10:26 |Read mode
疑似是个陈题,好像只好解析算$PB$取最值的点,选C
q-y-11.jpg

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-6-12 22:40
Last edited by isee 2021-6-12 23:06题:

设`B`是椭圆`C:\frac {x^2}{a^2}+\frac {y^2}{b^2}=1(a>b>0)`的上顶点,若`C`上任意一点`P`都满足`\abs{PB}\leqslant 2b`,则`C`的离心率的取值范围是(      )

C. `\left(0,\frac{\sqrt 2}2\right]`

解,设`P(a\cos\alpha,b\sin\alpha)`,则
\begin{align*}
\abs{PB}^2=a^2\cos^2\alpha+b^2(\sin\alpha-1)^2&\leqslant 4b^2\\[1em]
\frac{b^2}{a^2}&\geqslant \frac{\cos^2\alpha}{4-(\sin\alpha-1)^2}\\[1em]
&=\frac{(1+\sin\alpha)(1-\sin\alpha)}{(1+\sin\alpha)(3-\sin\alpha)}\\[1em]
&=\frac 1{1+\frac 2{1-\sin\alpha}}\\[1em]
&\in \left(0,\frac 12\right]
\end{align*}

依题有`b^2/a^2\geqslant \frac 12`,于是`\mathrm e\in \left(0,\frac {\sqrt 2}2\right]`,选 C.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-6-12 23:07
这肯定是陈题啊……

令 `P(x,y)`,有
\[PB^2=x^2+(y-b)^2=\frac{a^2}{b^2}(b^2-y^2)+(y-b)^2,\]则
\[PB^2-(2b)^2=\frac{a^2}{b^2}(b^2-y^2)+(y+b)(y-3b)=(y+b)\left( \frac{b^2-a^2}{b^2}y+\frac{a^2}b-3b \right),\]由于 `y\in[-b,b]`,第一个括号恒非负,需要第二个括号恒非正,而第二个括号关于 `y` 递减,所以只需
\[\frac{b^2-a^2}{b^2}\cdot(-b)+\frac{a^2}b-3b\leqslant0,\]化简得 `a^2\leqslant2b^2`。

Mobile version|Discuz Math Forum

2025-5-31 11:25 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit