Forgot password?
 Register account
View 280|Reply 1

[几何] 2022年高考浙江卷第21题 求线段最小值

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2022-6-13 17:51 |Read mode
Last edited by isee 2022-6-14 14:03不过,没啥字母

==

如图,已知椭圆\(\frac{x^2}{12}+{y^2}=1\).设$A$,$B$是椭圆上异于$P(0,1)$的两点,且点$Q\left( 0,\frac{1}{2} \right)$在线段$AB$上,直线$PA,PB$分别交直线\(y=-\frac{1}{2}x+3\)于C,D两点.

(1)求点$P$到椭圆上点 距离的最大值;

(2)求$|CD|$的最小值.
061322-zj-21.jpg
isee=freeMaths@知乎

1

Threads

17

Posts

1097

Credits

Credits
1097

Show all posts

AzraeL Posted 2022-6-13 18:40
设$A(2\sqrt3\sin2m,\cos2m),B(2\sqrt3\sin2n,\cos2n)$,那么\[
AB:\dfrac{x\sin(m+n)}{2\sqrt3}+y\cos(m+n)=\cos(m-n).\]
代入$Q\left(0,\dfrac12\right)$,得\[
\tan m\tan n=-\dfrac13.\]
将$P(0,1)$看作$(2\sqrt3\sin0,\cos0)$,仿照$AB$可以得出
\begin{cases*}
AP:x\sin m+2y\sqrt3\cos m=2\sqrt3\cos m,\\
BP:x\sin n+2y\sqrt3\cos n=2\sqrt3\cos n.
\end{cases*}
分别与$CD:y=-\dfrac12x+3$联立可得\[
x_C=\dfrac{4\sqrt3}{\sqrt3-\tan m},x_D=\dfrac{4\sqrt3}{\sqrt3-\tan n}.\]
于是\[
|x_C-x_D|=\dfrac{16\sqrt3|\tan m-\tan n|}{|12+4\tan m\tan n-4\sqrt3(\tan m+\tan n)|}=\dfrac{12\sqrt{3(\tan m+\tan n)^2+4}\cdot\sqrt{9+16}}{5|8-3\sqrt3(\tan m+\tan n)|}\geqslant\dfrac{12}5.\]
当且仅当$(\tan m,\tan n)=\left(-\dfrac{2\sqrt3}3,\dfrac{\sqrt3}6\right)$或$\left(\dfrac{\sqrt3}6,-\dfrac{2\sqrt3}3\right)$时等号成立,从而\[
|CD|=\sqrt{\left(1+\dfrac14\right)}|x_C-x_D|\geqslant\dfrac{6\sqrt5}5.\]
这个题目和2013年浙江文科解析几何是一个题型,后者是抛物线,计算量要小一点.

Mobile version|Discuz Math Forum

2025-5-31 10:59 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit