Forgot password
 Register account
View 172|Reply 1

[几何] 从一点作椭圆的四条法线的截距的关系

[Copy link]

3214

Threads

7831

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-8-12 10:18 |Read mode
C. Smith, An Elementary Treatise on Conic Sections, Macmillan, London, 1885. pp. 226 (EXAMPLES ON CHAPTER X.)

61. If from any point four normals be drawn to an ellipse meeting an axis in $G_1,G_2,G_3,G_4$, then will$$\frac{1}{C G_{1}}+\frac{1}{C G_{2}}+\frac{1}{C G_{3}}+\frac{1}{C G_{4}}=\frac{4}{C G_{1}+C G_{2}+C G_{3}+CG_{4}}$$

3214

Threads

7831

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2022-8-12 10:32
设椭圆的方程为$$mx^2+ny^2=1$$在$Q(x_0,y_0)$处的切线$mxx_0+nyy_0=1$与$y$轴的交点的横坐标为$\frac1{ny_0}$.
设$PQ$为法线, 点$P$的坐标为$(x_P,y_P)$, 则\begin{cases}\frac{m x_0}{n y_0}=\frac{x_0-x_P}{y_0-y_P}\\mx_0^2+ny_0^2=1\end{cases}消去$x_0$得\begin{multline}y_0^4 \left(m^2 n-2 m n^2+n^3\right)+y_0^3 \left(2 m n^2 y_P-2 m^2 n y_P\right)\\+y_0^2 \left(m^2 n y_P^2-m^2+m n^2 x_P^2+2 m n-n^2\right)+y_0 \left(2 m^2 y_P-2 m n y_P\right)-m^2 y_P^2=0\end{multline}在(1)中$y_0$的四个根是$CG_1,CG_2,CG_3,CG_4$, 所以
$$\frac{1}{C G_{1}}+\frac{1}{C G_{2}}+\frac{1}{C G_{3}}+\frac{1}{C G_{4}}=\frac{2 m^2 y_P-2 m n y_P}{m^2 y_P^2}=\frac{2 (m-n)}{m y_P}$$
$$\frac{4}{C G_{1}+C G_{2}+C G_{3}+CG_{4}}=-\frac{4 \left(m^2 n-2 m n^2+n^3\right)}{2 m n^2 y_P-2 m^2 n y_P}=\frac{2 (m-n)}{m y_P}$$Q.E.D

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 11:28 GMT+8

Powered by Discuz!

Processed in 0.015934 seconds, 43 queries