Forgot password?
 Register account
View 241|Reply 1

[几何] 从一点作椭圆的四条法线的截距的关系

[Copy link]

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

hbghlyj Posted 2022-8-12 10:18 |Read mode
C. Smith, An Elementary Treatise on Conic Sections, Macmillan, London, 1885. pp. 226 (EXAMPLES ON CHAPTER X.)

61. If from any point four normals be drawn to an ellipse meeting an axis in $G_1,G_2,G_3,G_4$, then will$$\frac{1}{C G_{1}}+\frac{1}{C G_{2}}+\frac{1}{C G_{3}}+\frac{1}{C G_{4}}=\frac{4}{C G_{1}+C G_{2}+C G_{3}+CG_{4}}$$

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

 Author| hbghlyj Posted 2022-8-12 10:32
设椭圆的方程为$$mx^2+ny^2=1$$在$Q(x_0,y_0)$处的切线$mxx_0+nyy_0=1$与$y$轴的交点的横坐标为$\frac1{ny_0}$.
设$PQ$为法线, 点$P$的坐标为$(x_P,y_P)$, 则\begin{cases}\frac{m x_0}{n y_0}=\frac{x_0-x_P}{y_0-y_P}\\mx_0^2+ny_0^2=1\end{cases}消去$x_0$得\begin{multline}y_0^4 \left(m^2 n-2 m n^2+n^3\right)+y_0^3 \left(2 m n^2 y_P-2 m^2 n y_P\right)\\+y_0^2 \left(m^2 n y_P^2-m^2+m n^2 x_P^2+2 m n-n^2\right)+y_0 \left(2 m^2 y_P-2 m n y_P\right)-m^2 y_P^2=0\end{multline}在(1)中$y_0$的四个根是$CG_1,CG_2,CG_3,CG_4$, 所以
$$\frac{1}{C G_{1}}+\frac{1}{C G_{2}}+\frac{1}{C G_{3}}+\frac{1}{C G_{4}}=\frac{2 m^2 y_P-2 m n y_P}{m^2 y_P^2}=\frac{2 (m-n)}{m y_P}$$
$$\frac{4}{C G_{1}+C G_{2}+C G_{3}+CG_{4}}=-\frac{4 \left(m^2 n-2 m n^2+n^3\right)}{2 m n^2 y_P-2 m^2 n y_P}=\frac{2 (m-n)}{m y_P}$$Q.E.D

Mobile version|Discuz Math Forum

2025-6-5 07:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit