Forgot password?
 Register account
View 253|Reply 2

[不等式] 对称分式的最大值在不相等处取得

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2022-11-10 21:20 |Read mode
源自知乎提问



:正实数 $a$,$b$ 满足 $a+b=4$,则 $\dfrac 1{1+a^2}+\dfrac 1{1+b^2}$ 的最大值为______.





尝试用判别式法,记 $ab=y$ \begin{align*}
t&=\frac 1{1+a^2}+\frac 1{1+b^2}\\[1ex]
&=\frac{(a+b)^2-2ab+2}{a^2b^2+(a+b)^2-2ab+1}\\[1ex]
&=\frac{-2y+18}{y^2-2y+17},
\end{align*} 去分母整理得 \begin{gather*}
ty^2+2(1-t)y+17t-18=0\\[1ex]
\Rightarrow \Delta=4(1-t)^2-4t(17t-18)\geqslant 0\\[1ex]
16t^2-16t-1\leqslant 0\\[1ex]
\Rightarrow t\leqslant \frac{2+\sqrt 5}4.
\end{gather*} 当且仅当 \[ab=y=\dfrac {t-1}t=1-\dfrac4{\sqrt 5+2}=9-4\sqrt 5. \]
isee=freeMaths@知乎

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-11-12 05:53

Ti𝑘Z

从0到4的图象
将左上角放大:

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-11-12 06:45
\[f(k)=\frac1{1+a^k}+\frac1{1+(4-a)^k}\]固定$a$的极限:
\[\lim_{k\to \infty}f(k)=\begin{cases}1&0\le a<1\\\frac12&a=1\\0&1<a\le2\end{cases}\]

Mobile version|Discuz Math Forum

2025-5-31 10:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit