Forgot password?
 Register account
View 2409|Reply 9

[不等式] 请教 a^b+b^a>1

[Copy link]

9

Threads

11

Posts

112

Credits

Credits
112

Show all posts

25717246 Posted 2021-3-8 16:39 |Read mode
已知0<a<1,0<b<1,求证a^b+b^a>1

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2021-3-8 16:48
提示:证 a^b>a/(a+b)

9

Threads

11

Posts

112

Credits

Credits
112

Show all posts

 Author| 25717246 Posted 2021-3-8 19:49
回复 2# kuing
太妙了,请教郭版您是如何想到的

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2021-3-8 19:54
回复 3# 25717246

不是我想的,十几年前我撸这题撸不出的时候,别人也是这样提示我的。

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2021-3-8 19:56
回复 4# kuing


传承,哈哈哈哈哈哈,我是路过来打酱油的~

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2021-3-8 19:58
回复  kuing


传承,哈哈哈哈哈哈,我是路过来打酱油的~
isee 发表于 2021-3-8 19:56

叩,我竟然明白了——按2#会证主楼,至于2#怎么证——打酱油,先

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2021-3-8 23:24
叩,我竟然明白了——按2#会证主楼,至于2#怎么证——打酱油,先
isee 发表于 2021-3-8 19:58
给出一种不同的证法:由伯努利不等式知,$\left(\dfrac{1}{a}\right)^{b}=\left(1+\dfrac{1-a}{a}\right)^{b}<1+\dfrac{1-a}{a} \cdot b=\dfrac{a+b-a b}{a}$,
即$\left(\dfrac{1}{a}\right)^{b}<\dfrac{a+b-a b}{a}$,从而,$a^{b}>\dfrac{a}{a+b-a b}$,同理,$b^{a}>\dfrac{b}{a+b-ab}$,
所以,$a^{b}+b^{a}>\dfrac{a}{a+b-ab}+\dfrac{b}{a+b-ab}=1+\dfrac{ab}{a+b-ab}>1$,证毕。

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2021-3-19 00:11
提示:证 a^b>a/(a+b)
kuing 发表于 2021-3-8 16:48
这个不等式 a^b>a/(a+b) ,是不是只要是两正数,都成立?(偷个懒,不想推导,7#多了一项,还涉及两数积,故有此一问)

3157

Threads

7925

Posts

610K

Credits

Credits
64218
QQ

Show all posts

hbghlyj Posted 2024-9-14 21:23
isee 发表于 2021-3-18 16:11
这个不等式 a^b>a/(a+b) ,是不是只要是两正数,都成立?(偷个懒,不想推导,7#多了一项,还涉及两数积 ...
$a = 0.1, b = 1.1,$
$$a^b = 0.1^{1.1}<\frac{a}{a+b}= \frac1{12}$$

3157

Threads

7925

Posts

610K

Credits

Credits
64218
QQ

Show all posts

hbghlyj Posted 2024-9-17 10:20
其妙 发表于 2021-3-8 15:24
给出一种不同的证法:由伯努利不等式知,$\left(\dfrac{1}{a}\right)^{b}=\left(1+\dfrac{1-a}{a}\right)^{b}<1+\dfrac{1-a}{a} \cdot b=\dfrac{a+b-a b}{a}$,
类似的方法用于 证明(x^y+y^x)(1/x+1/y)≥4
Screenshot 2024-09-17 111259.png



相关帖子forum.php?mod=viewthread&tid=8252
$$\frac{x^y+y^x}{2}\geq\frac{2xy}{x+y}$$
math.stackexchange.com/questions/4269107
math.stackexchange.com/questions/4268111

Mobile version|Discuz Math Forum

2025-6-6 14:24 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit